Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells

Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. Mitochondrial func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2006-08, Vol.49 (8), p.1924-1936
Hauptverfasser: LIM, J. H, LEE, J. I, SUH, Y. H, KIM, W, SONG, J. H, JUNG, M. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1936
container_issue 8
container_start_page 1924
container_title Diabetologia
container_volume 49
creator LIM, J. H
LEE, J. I
SUH, Y. H
KIM, W
SONG, J. H
JUNG, M. H
description Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.
doi_str_mv 10.1007/s00125-006-0278-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68619998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1075011131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fc5e02dc88ebbb0adb82c1ca5e54446a41c3e12a1feecd8a93f08a4f7afe4dfb3</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paDZpf0AvxRTa26T-Go_nWJa0KaTkkkJvxuOPrYPHk1rjw_77etmBQE8S0vMKSS9C7ym5oYQMX4AQyvqOENkRNqhOvEI7KjjriGDqNdqd2h1V8vclugJ4IoTwXsg36JLKgUvK-Q7Bz7gu9s-SXYkmYXeEULNd45JxzK5aD9hMvhST11aAmmLGEA_ZpJYdsMkOH1K1C3hc15gimE2L51pi9njP9pTh-bisdfLY-pTgLboIJoF_t8Vr9Ovb7eP-rrt_-P5j__W-s3wc1y7Y3hPmrFJ-miZi3KSYpdb0vhdCSCOo5Z4yQ4P31ikz8kCUEWEwwQsXJn6NPp_nPpflb_Ww6jnCaQOT_VJBSyXpOI6qgR__A5-WWtqNoBnlSihKeIPoGbJlASg-6OcSZ1OOmhJ9skOf7dDNDn2yQ4um-bANrtPs3Yti-38DPm2AAWtSaH-2EV64YVRUDZL_A86qlbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213848103</pqid></control><display><type>article</type><title>Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>LIM, J. H ; LEE, J. I ; SUH, Y. H ; KIM, W ; SONG, J. H ; JUNG, M. H</creator><creatorcontrib>LIM, J. H ; LEE, J. I ; SUH, Y. H ; KIM, W ; SONG, J. H ; JUNG, M. H</creatorcontrib><description>Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-006-0278-4</identifier><identifier>PMID: 16736133</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Animals ; Biological and medical sciences ; Cell Line ; Diabetes ; Diabetes. Impaired glucose tolerance ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; Glucose ; Glucose - metabolism ; Glucose Transporter Type 4 - genetics ; Glucose Transporter Type 4 - metabolism ; Glycolysis ; Insulin - physiology ; Insulin resistance ; Kinases ; Medical sciences ; Membrane Potentials ; Metabolism ; Mice ; Mitochondria ; Mitochondria, Muscle - physiology ; Mitochondrial DNA ; Mitochondrial Membranes - physiology ; Muscle, Skeletal - physiology ; Myoblasts - physiology ; Phosphorylation ; Proteins ; Signal Transduction ; Transcription factors ; Transfection ; Triglycerides - metabolism</subject><ispartof>Diabetologia, 2006-08, Vol.49 (8), p.1924-1936</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fc5e02dc88ebbb0adb82c1ca5e54446a41c3e12a1feecd8a93f08a4f7afe4dfb3</citedby><cites>FETCH-LOGICAL-c399t-fc5e02dc88ebbb0adb82c1ca5e54446a41c3e12a1feecd8a93f08a4f7afe4dfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17981876$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16736133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LIM, J. H</creatorcontrib><creatorcontrib>LEE, J. I</creatorcontrib><creatorcontrib>SUH, Y. H</creatorcontrib><creatorcontrib>KIM, W</creatorcontrib><creatorcontrib>SONG, J. H</creatorcontrib><creatorcontrib>JUNG, M. H</creatorcontrib><title>Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><description>Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Diabetes</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 4 - genetics</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>Glycolysis</subject><subject>Insulin - physiology</subject><subject>Insulin resistance</subject><subject>Kinases</subject><subject>Medical sciences</subject><subject>Membrane Potentials</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria, Muscle - physiology</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membranes - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Myoblasts - physiology</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Signal Transduction</subject><subject>Transcription factors</subject><subject>Transfection</subject><subject>Triglycerides - metabolism</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkU1rHDEMhk1paDZpf0AvxRTa26T-Go_nWJa0KaTkkkJvxuOPrYPHk1rjw_77etmBQE8S0vMKSS9C7ym5oYQMX4AQyvqOENkRNqhOvEI7KjjriGDqNdqd2h1V8vclugJ4IoTwXsg36JLKgUvK-Q7Bz7gu9s-SXYkmYXeEULNd45JxzK5aD9hMvhST11aAmmLGEA_ZpJYdsMkOH1K1C3hc15gimE2L51pi9njP9pTh-bisdfLY-pTgLboIJoF_t8Vr9Ovb7eP-rrt_-P5j__W-s3wc1y7Y3hPmrFJ-miZi3KSYpdb0vhdCSCOo5Z4yQ4P31ikz8kCUEWEwwQsXJn6NPp_nPpflb_Ww6jnCaQOT_VJBSyXpOI6qgR__A5-WWtqNoBnlSihKeIPoGbJlASg-6OcSZ1OOmhJ9skOf7dDNDn2yQ4um-bANrtPs3Yti-38DPm2AAWtSaH-2EV64YVRUDZL_A86qlbY</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>LIM, J. H</creator><creator>LEE, J. I</creator><creator>SUH, Y. H</creator><creator>KIM, W</creator><creator>SONG, J. H</creator><creator>JUNG, M. H</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20060801</creationdate><title>Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells</title><author>LIM, J. H ; LEE, J. I ; SUH, Y. H ; KIM, W ; SONG, J. H ; JUNG, M. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fc5e02dc88ebbb0adb82c1ca5e54446a41c3e12a1feecd8a93f08a4f7afe4dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Diabetes</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 4 - genetics</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>Glycolysis</topic><topic>Insulin - physiology</topic><topic>Insulin resistance</topic><topic>Kinases</topic><topic>Medical sciences</topic><topic>Membrane Potentials</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria, Muscle - physiology</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membranes - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Myoblasts - physiology</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Signal Transduction</topic><topic>Transcription factors</topic><topic>Transfection</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIM, J. H</creatorcontrib><creatorcontrib>LEE, J. I</creatorcontrib><creatorcontrib>SUH, Y. H</creatorcontrib><creatorcontrib>KIM, W</creatorcontrib><creatorcontrib>SONG, J. H</creatorcontrib><creatorcontrib>JUNG, M. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIM, J. H</au><au>LEE, J. I</au><au>SUH, Y. H</au><au>KIM, W</au><au>SONG, J. H</au><au>JUNG, M. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells</atitle><jtitle>Diabetologia</jtitle><addtitle>Diabetologia</addtitle><date>2006-08-01</date><risdate>2006</risdate><volume>49</volume><issue>8</issue><spage>1924</spage><epage>1936</epage><pages>1924-1936</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Mitochondrial dysfunction is considered a critical component in the development of diabetes. The aim of this study was to elucidate the molecular mechanisms involved in the development of insulin resistance and diabetes through investigation of mitochondrial retrograde signalling. Mitochondrial function of C2C12 myotube cells was impaired by genetic (ethidium bromide) and metabolic (oligomycin) stress, and changes in target molecules related to insulin signalling were analysed. Concomitant with reductions in mitochondrial membrane potential (DeltaPsim) and ATP synthesis, production of IRS1 and solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4, formerly known as GLUT4) were reduced. Moreover, serine phosphorylation of IRS1 increased, resulting in decreased tyrosine phosphorylation. This indicates that mitochondrial dysfunction decreases insulin-stimulated SLC2A4 translocation and glucose uptake. Mitochondrial stress activated c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) signalling in a Ca(2+)-dependent manner, and removal of free Ca(2+) by BAPTA-AM, as well as inhibition of JNK and p38 MAPK, abrogated mitochondrial stress-induced reductions in IRS1 and SLC2A4 production. Mitochondrial dysfunction after oligomycin treatment significantly increased levels of activating transcription factor 3 (ATF3), which represses Irs1 promoter activity. Removal of the 5' flanking region of Irs1 demonstrated that the promoter region within 191 bases from the transcription site may be involved in the transcriptional repression of Irs1 by mitochondrial stress. We show distinct mitochondrial retrograde signalling, where Irs1 is downregulated through ATF3 in a Ca(2+)-, JNK- and p38 MAPK-dependent manner, and IRS1 is inactivated. Therefore, mitochondrial dysfunction causes aberrant insulin signalling and abnormal utilisation of glucose, as observed in many insulin resistance states.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>16736133</pmid><doi>10.1007/s00125-006-0278-4</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2006-08, Vol.49 (8), p.1924-1936
issn 0012-186X
1432-0428
language eng
recordid cdi_proquest_miscellaneous_68619998
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biological and medical sciences
Cell Line
Diabetes
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Glucose
Glucose - metabolism
Glucose Transporter Type 4 - genetics
Glucose Transporter Type 4 - metabolism
Glycolysis
Insulin - physiology
Insulin resistance
Kinases
Medical sciences
Membrane Potentials
Metabolism
Mice
Mitochondria
Mitochondria, Muscle - physiology
Mitochondrial DNA
Mitochondrial Membranes - physiology
Muscle, Skeletal - physiology
Myoblasts - physiology
Phosphorylation
Proteins
Signal Transduction
Transcription factors
Transfection
Triglycerides - metabolism
title Mitochondrial dysfunction induces aberrant insulin signalling and glucose utilisation in murine C2C12 myotube cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20dysfunction%20induces%20aberrant%20insulin%20signalling%20and%20glucose%20utilisation%20in%20murine%20C2C12%20myotube%20cells&rft.jtitle=Diabetologia&rft.au=LIM,%20J.%20H&rft.date=2006-08-01&rft.volume=49&rft.issue=8&rft.spage=1924&rft.epage=1936&rft.pages=1924-1936&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-006-0278-4&rft_dat=%3Cproquest_cross%3E1075011131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213848103&rft_id=info:pmid/16736133&rfr_iscdi=true