Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory
It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on whic...
Gespeichert in:
Veröffentlicht in: | Current biology 2006-07, Vol.16 (13), p.1269-1279 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1279 |
---|---|
container_issue | 13 |
container_start_page | 1269 |
container_title | Current biology |
container_volume | 16 |
creator | Kemenes, Ildikó Straub, Volko A. Nikitin, Eugeny S. Staras, Kevin O'Shea, Michael Kemenes, György Benjamin, Paul R. |
description | It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research.
By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior.
We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output. |
doi_str_mv | 10.1016/j.cub.2006.05.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68618585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982206016320</els_id><sourcerecordid>19298386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</originalsourceid><addsrcrecordid>eNqFkE1r3DAURUVJaSZJf0A2Ravs7D7JsizRVUg_UpgmpaRrIUvPQYNtTSU74H8fhxnoLlk9uJx7HxxCLhmUDJj8vCvd3JYcQJZQlyD0O7JhqtEFCFGfkA1oCYVWnJ-Ss5x3AIwrLT-QUyYVF5rJDbn_E3uksaNfsbcLenoXx7yMdj8FR-9wTnG0Pf3d27wGYVpoGOk2jo_FA6aBXuccXbBTeEL6C4eYlgvyvrN9xo_He07-fv_2cHNbbO9__Ly53hZu_TsVCJyhaABBeCWx8gybGpXV1tmqA-9FxVrFauCeI-NWuFZCy1XjsLWia6pzcnXY3af4b8Y8mSFkh31vR4xzNlJJpmpVvwkyzbWqlFxBdgBdijkn7Mw-hcGmxTAwL7rNzqy6zYtuA7VZda-dT8fxuR3Q_28c_a7AlwOAq4ungMlkF3B06ENCNxkfwyvzz8dhkF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19298386</pqid></control><display><type>article</type><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</creator><creatorcontrib>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</creatorcontrib><description>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research.
By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior.
We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2006.05.049</identifier><identifier>PMID: 16824916</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Association Learning ; Calcium - metabolism ; Electric Conductivity ; Electrophysiology ; Feeding Behavior - physiology ; Lymnaea - cytology ; Lymnaea - metabolism ; Lymnaea - physiology ; Lymnaea stagnalis ; Membrane Potentials - physiology ; Memory - physiology ; Neuronal Plasticity ; Neurons - metabolism ; Neurons - physiology ; Reward ; Synapses - physiology ; Synaptic Transmission - physiology ; SYSNEURO</subject><ispartof>Current biology, 2006-07, Vol.16 (13), p.1269-1279</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</citedby><cites>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982206016320$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16824916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemenes, Ildikó</creatorcontrib><creatorcontrib>Straub, Volko A.</creatorcontrib><creatorcontrib>Nikitin, Eugeny S.</creatorcontrib><creatorcontrib>Staras, Kevin</creatorcontrib><creatorcontrib>O'Shea, Michael</creatorcontrib><creatorcontrib>Kemenes, György</creatorcontrib><creatorcontrib>Benjamin, Paul R.</creatorcontrib><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research.
By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior.
We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</description><subject>Animals</subject><subject>Association Learning</subject><subject>Calcium - metabolism</subject><subject>Electric Conductivity</subject><subject>Electrophysiology</subject><subject>Feeding Behavior - physiology</subject><subject>Lymnaea - cytology</subject><subject>Lymnaea - metabolism</subject><subject>Lymnaea - physiology</subject><subject>Lymnaea stagnalis</subject><subject>Membrane Potentials - physiology</subject><subject>Memory - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Reward</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>SYSNEURO</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAURUVJaSZJf0A2Ravs7D7JsizRVUg_UpgmpaRrIUvPQYNtTSU74H8fhxnoLlk9uJx7HxxCLhmUDJj8vCvd3JYcQJZQlyD0O7JhqtEFCFGfkA1oCYVWnJ-Ss5x3AIwrLT-QUyYVF5rJDbn_E3uksaNfsbcLenoXx7yMdj8FR-9wTnG0Pf3d27wGYVpoGOk2jo_FA6aBXuccXbBTeEL6C4eYlgvyvrN9xo_He07-fv_2cHNbbO9__Ly53hZu_TsVCJyhaABBeCWx8gybGpXV1tmqA-9FxVrFauCeI-NWuFZCy1XjsLWia6pzcnXY3af4b8Y8mSFkh31vR4xzNlJJpmpVvwkyzbWqlFxBdgBdijkn7Mw-hcGmxTAwL7rNzqy6zYtuA7VZda-dT8fxuR3Q_28c_a7AlwOAq4ungMlkF3B06ENCNxkfwyvzz8dhkF0</recordid><startdate>20060711</startdate><enddate>20060711</enddate><creator>Kemenes, Ildikó</creator><creator>Straub, Volko A.</creator><creator>Nikitin, Eugeny S.</creator><creator>Staras, Kevin</creator><creator>O'Shea, Michael</creator><creator>Kemenes, György</creator><creator>Benjamin, Paul R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060711</creationdate><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><author>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Association Learning</topic><topic>Calcium - metabolism</topic><topic>Electric Conductivity</topic><topic>Electrophysiology</topic><topic>Feeding Behavior - physiology</topic><topic>Lymnaea - cytology</topic><topic>Lymnaea - metabolism</topic><topic>Lymnaea - physiology</topic><topic>Lymnaea stagnalis</topic><topic>Membrane Potentials - physiology</topic><topic>Memory - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Reward</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>SYSNEURO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemenes, Ildikó</creatorcontrib><creatorcontrib>Straub, Volko A.</creatorcontrib><creatorcontrib>Nikitin, Eugeny S.</creatorcontrib><creatorcontrib>Staras, Kevin</creatorcontrib><creatorcontrib>O'Shea, Michael</creatorcontrib><creatorcontrib>Kemenes, György</creatorcontrib><creatorcontrib>Benjamin, Paul R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemenes, Ildikó</au><au>Straub, Volko A.</au><au>Nikitin, Eugeny S.</au><au>Staras, Kevin</au><au>O'Shea, Michael</au><au>Kemenes, György</au><au>Benjamin, Paul R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2006-07-11</date><risdate>2006</risdate><volume>16</volume><issue>13</issue><spage>1269</spage><epage>1279</epage><pages>1269-1279</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research.
By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior.
We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>16824916</pmid><doi>10.1016/j.cub.2006.05.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2006-07, Vol.16 (13), p.1269-1279 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_68618585 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Association Learning Calcium - metabolism Electric Conductivity Electrophysiology Feeding Behavior - physiology Lymnaea - cytology Lymnaea - metabolism Lymnaea - physiology Lymnaea stagnalis Membrane Potentials - physiology Memory - physiology Neuronal Plasticity Neurons - metabolism Neurons - physiology Reward Synapses - physiology Synaptic Transmission - physiology SYSNEURO |
title | Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Delayed%20Nonsynaptic%20Neuronal%20Plasticity%20in%20Long-Term%20Associative%20Memory&rft.jtitle=Current%20biology&rft.au=Kemenes,%20Ildik%C3%B3&rft.date=2006-07-11&rft.volume=16&rft.issue=13&rft.spage=1269&rft.epage=1279&rft.pages=1269-1279&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2006.05.049&rft_dat=%3Cproquest_cross%3E19298386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19298386&rft_id=info:pmid/16824916&rft_els_id=S0960982206016320&rfr_iscdi=true |