Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory

It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2006-07, Vol.16 (13), p.1269-1279
Hauptverfasser: Kemenes, Ildikó, Straub, Volko A., Nikitin, Eugeny S., Staras, Kevin, O'Shea, Michael, Kemenes, György, Benjamin, Paul R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1279
container_issue 13
container_start_page 1269
container_title Current biology
container_volume 16
creator Kemenes, Ildikó
Straub, Volko A.
Nikitin, Eugeny S.
Staras, Kevin
O'Shea, Michael
Kemenes, György
Benjamin, Paul R.
description It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.
doi_str_mv 10.1016/j.cub.2006.05.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68618585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982206016320</els_id><sourcerecordid>19298386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</originalsourceid><addsrcrecordid>eNqFkE1r3DAURUVJaSZJf0A2Ravs7D7JsizRVUg_UpgmpaRrIUvPQYNtTSU74H8fhxnoLlk9uJx7HxxCLhmUDJj8vCvd3JYcQJZQlyD0O7JhqtEFCFGfkA1oCYVWnJ-Ss5x3AIwrLT-QUyYVF5rJDbn_E3uksaNfsbcLenoXx7yMdj8FR-9wTnG0Pf3d27wGYVpoGOk2jo_FA6aBXuccXbBTeEL6C4eYlgvyvrN9xo_He07-fv_2cHNbbO9__Ly53hZu_TsVCJyhaABBeCWx8gybGpXV1tmqA-9FxVrFauCeI-NWuFZCy1XjsLWia6pzcnXY3af4b8Y8mSFkh31vR4xzNlJJpmpVvwkyzbWqlFxBdgBdijkn7Mw-hcGmxTAwL7rNzqy6zYtuA7VZda-dT8fxuR3Q_28c_a7AlwOAq4ungMlkF3B06ENCNxkfwyvzz8dhkF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19298386</pqid></control><display><type>article</type><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</creator><creatorcontrib>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</creatorcontrib><description>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2006.05.049</identifier><identifier>PMID: 16824916</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; Association Learning ; Calcium - metabolism ; Electric Conductivity ; Electrophysiology ; Feeding Behavior - physiology ; Lymnaea - cytology ; Lymnaea - metabolism ; Lymnaea - physiology ; Lymnaea stagnalis ; Membrane Potentials - physiology ; Memory - physiology ; Neuronal Plasticity ; Neurons - metabolism ; Neurons - physiology ; Reward ; Synapses - physiology ; Synaptic Transmission - physiology ; SYSNEURO</subject><ispartof>Current biology, 2006-07, Vol.16 (13), p.1269-1279</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</citedby><cites>FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982206016320$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16824916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemenes, Ildikó</creatorcontrib><creatorcontrib>Straub, Volko A.</creatorcontrib><creatorcontrib>Nikitin, Eugeny S.</creatorcontrib><creatorcontrib>Staras, Kevin</creatorcontrib><creatorcontrib>O'Shea, Michael</creatorcontrib><creatorcontrib>Kemenes, György</creatorcontrib><creatorcontrib>Benjamin, Paul R.</creatorcontrib><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</description><subject>Animals</subject><subject>Association Learning</subject><subject>Calcium - metabolism</subject><subject>Electric Conductivity</subject><subject>Electrophysiology</subject><subject>Feeding Behavior - physiology</subject><subject>Lymnaea - cytology</subject><subject>Lymnaea - metabolism</subject><subject>Lymnaea - physiology</subject><subject>Lymnaea stagnalis</subject><subject>Membrane Potentials - physiology</subject><subject>Memory - physiology</subject><subject>Neuronal Plasticity</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Reward</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>SYSNEURO</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAURUVJaSZJf0A2Ravs7D7JsizRVUg_UpgmpaRrIUvPQYNtTSU74H8fhxnoLlk9uJx7HxxCLhmUDJj8vCvd3JYcQJZQlyD0O7JhqtEFCFGfkA1oCYVWnJ-Ss5x3AIwrLT-QUyYVF5rJDbn_E3uksaNfsbcLenoXx7yMdj8FR-9wTnG0Pf3d27wGYVpoGOk2jo_FA6aBXuccXbBTeEL6C4eYlgvyvrN9xo_He07-fv_2cHNbbO9__Ly53hZu_TsVCJyhaABBeCWx8gybGpXV1tmqA-9FxVrFauCeI-NWuFZCy1XjsLWia6pzcnXY3af4b8Y8mSFkh31vR4xzNlJJpmpVvwkyzbWqlFxBdgBdijkn7Mw-hcGmxTAwL7rNzqy6zYtuA7VZda-dT8fxuR3Q_28c_a7AlwOAq4ungMlkF3B06ENCNxkfwyvzz8dhkF0</recordid><startdate>20060711</startdate><enddate>20060711</enddate><creator>Kemenes, Ildikó</creator><creator>Straub, Volko A.</creator><creator>Nikitin, Eugeny S.</creator><creator>Staras, Kevin</creator><creator>O'Shea, Michael</creator><creator>Kemenes, György</creator><creator>Benjamin, Paul R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20060711</creationdate><title>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</title><author>Kemenes, Ildikó ; Straub, Volko A. ; Nikitin, Eugeny S. ; Staras, Kevin ; O'Shea, Michael ; Kemenes, György ; Benjamin, Paul R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-e021e470e04d86e3d1e75e8a9aca3f0dd431b81502d2e12a4cb60b287ceba4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Association Learning</topic><topic>Calcium - metabolism</topic><topic>Electric Conductivity</topic><topic>Electrophysiology</topic><topic>Feeding Behavior - physiology</topic><topic>Lymnaea - cytology</topic><topic>Lymnaea - metabolism</topic><topic>Lymnaea - physiology</topic><topic>Lymnaea stagnalis</topic><topic>Membrane Potentials - physiology</topic><topic>Memory - physiology</topic><topic>Neuronal Plasticity</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Reward</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>SYSNEURO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemenes, Ildikó</creatorcontrib><creatorcontrib>Straub, Volko A.</creatorcontrib><creatorcontrib>Nikitin, Eugeny S.</creatorcontrib><creatorcontrib>Staras, Kevin</creatorcontrib><creatorcontrib>O'Shea, Michael</creatorcontrib><creatorcontrib>Kemenes, György</creatorcontrib><creatorcontrib>Benjamin, Paul R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemenes, Ildikó</au><au>Straub, Volko A.</au><au>Nikitin, Eugeny S.</au><au>Staras, Kevin</au><au>O'Shea, Michael</au><au>Kemenes, György</au><au>Benjamin, Paul R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2006-07-11</date><risdate>2006</risdate><volume>16</volume><issue>13</issue><spage>1269</spage><epage>1279</epage><pages>1269-1279</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>It is now well established that persistent nonsynaptic neuronal plasticity occurs after learning and, like synaptic plasticity, it can be the substrate for long-term memory. What still remains unclear, though, is how nonsynaptic plasticity contributes to the altered neural network properties on which memory depends. Understanding how nonsynaptic plasticity is translated into modified network and behavioral output therefore represents an important objective of current learning and memory research. By using behavioral single-trial classical conditioning together with electrophysiological analysis and calcium imaging, we have explored the cellular mechanisms by which experience-induced nonsynaptic electrical changes in a neuronal soma remote from the synaptic region are translated into synaptic and circuit level effects. We show that after single-trial food-reward conditioning in the snail Lymnaea stagnalis, identified modulatory neurons that are extrinsic to the feeding network become persistently depolarized between 16 and 24 hr after training. This is delayed with respect to early memory formation but concomitant with the establishment and duration of long-term memory. The persistent nonsynaptic change is extrinsic to and maintained independently of synaptic effects occurring within the network directly responsible for the generation of feeding. Artificial membrane potential manipulation and calcium-imaging experiments suggest a novel mechanism whereby the somal depolarization of an extrinsic neuron recruits command-like intrinsic neurons of the circuit underlying the learned behavior. We show that nonsynaptic plasticity in an extrinsic modulatory neuron encodes information that enables the expression of long-term associative memory, and we describe how this information can be translated into modified network and behavioral output.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>16824916</pmid><doi>10.1016/j.cub.2006.05.049</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2006-07, Vol.16 (13), p.1269-1279
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_68618585
source MEDLINE; ScienceDirect Journals (5 years ago - present); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Association Learning
Calcium - metabolism
Electric Conductivity
Electrophysiology
Feeding Behavior - physiology
Lymnaea - cytology
Lymnaea - metabolism
Lymnaea - physiology
Lymnaea stagnalis
Membrane Potentials - physiology
Memory - physiology
Neuronal Plasticity
Neurons - metabolism
Neurons - physiology
Reward
Synapses - physiology
Synaptic Transmission - physiology
SYSNEURO
title Role of Delayed Nonsynaptic Neuronal Plasticity in Long-Term Associative Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A28%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Delayed%20Nonsynaptic%20Neuronal%20Plasticity%20in%20Long-Term%20Associative%20Memory&rft.jtitle=Current%20biology&rft.au=Kemenes,%20Ildik%C3%B3&rft.date=2006-07-11&rft.volume=16&rft.issue=13&rft.spage=1269&rft.epage=1279&rft.pages=1269-1279&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2006.05.049&rft_dat=%3Cproquest_cross%3E19298386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19298386&rft_id=info:pmid/16824916&rft_els_id=S0960982206016320&rfr_iscdi=true