ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis

Summary Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2006-07, Vol.61 (1), p.219-231
Hauptverfasser: Feissner, Robert E., Richard‐Fogal, Cynthia L., Frawley, Elaine R., Kranz, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 1
container_start_page 219
container_title Molecular microbiology
container_volume 61
creator Feissner, Robert E.
Richard‐Fogal, Cynthia L.
Frawley, Elaine R.
Kranz, Robert G.
description Summary Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP‐binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead‐end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP‐dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.
doi_str_mv 10.1111/j.1365-2958.2006.05221.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68616559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1084485391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4551-42b64909110886772f0c92087a7d91ef691dba1b9063e3e0f05fce1e9d248eed3</originalsourceid><addsrcrecordid>eNqNkc1u1DAQgC0EokvhFZCFBLcEjx079oFDWfFTqRUXKnGzHGfCZpXEi51VuzcegWfkSXDYFZW4wFxsab4ZzcxHCAVWQo7X2xKEkgU3UpecMVUyyTmUdw_I6k_iIVkxI1khNP9yRp6ktGUMBFPiMTkDpXkFrF6Rm4u3azpHN6VdiDPGn99_jNj2bsaWRhzQJaSho45uHI7Ub9wOY5iQumEIt4n6wxz8JoYRqadNH77ihKlPT8mjzg0Jn53ec3Lz_t3n9cfi6tOHy_XFVeErKaGoeKMqwwwA01rVNe-YN5zp2tWtAeyUgbZx0Jg8NQpkHZOdR0DT8kojtuKcvDr23cXwbY9ptmOfPA6DmzDsk1VagZLS_BMEI0CB1Bl88Re4Dfs45SUyo2TFhWQZ0kfIx5BSxM7uYj-6eLDA7CLIbu3iwS4e7CLI_hZk73Lp81P_fZMPfV94MpKBlyfAJe-GLqvxfbrnal3n4Jl7c-Ru-wEP_z2Avb6-XH7iF7Rdq1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196542350</pqid></control><display><type>article</type><title>ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Feissner, Robert E. ; Richard‐Fogal, Cynthia L. ; Frawley, Elaine R. ; Kranz, Robert G.</creator><creatorcontrib>Feissner, Robert E. ; Richard‐Fogal, Cynthia L. ; Frawley, Elaine R. ; Kranz, Robert G.</creatorcontrib><description>Summary Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP‐binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead‐end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP‐dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2006.05221.x</identifier><identifier>PMID: 16824107</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Apoproteins - metabolism ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biological and medical sciences ; Biological Transport ; Cytochrome c Group - biosynthesis ; E coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes ; Heme - metabolism ; Hemeproteins - biosynthesis ; Hemeproteins - genetics ; Hemeproteins - metabolism ; Immunology ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbiology ; Models, Biological ; Molecular Chaperones - metabolism ; Plasmids - genetics ; Recombinant Fusion Proteins - metabolism</subject><ispartof>Molecular microbiology, 2006-07, Vol.61 (1), p.219-231</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Jul 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4551-42b64909110886772f0c92087a7d91ef691dba1b9063e3e0f05fce1e9d248eed3</citedby><cites>FETCH-LOGICAL-c4551-42b64909110886772f0c92087a7d91ef691dba1b9063e3e0f05fce1e9d248eed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2006.05221.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2006.05221.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17877772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16824107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feissner, Robert E.</creatorcontrib><creatorcontrib>Richard‐Fogal, Cynthia L.</creatorcontrib><creatorcontrib>Frawley, Elaine R.</creatorcontrib><creatorcontrib>Kranz, Robert G.</creatorcontrib><title>ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP‐binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead‐end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP‐dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.</description><subject>Apoproteins - metabolism</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Cytochrome c Group - biosynthesis</subject><subject>E coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Heme - metabolism</subject><subject>Hemeproteins - biosynthesis</subject><subject>Hemeproteins - genetics</subject><subject>Hemeproteins - metabolism</subject><subject>Immunology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Molecular Chaperones - metabolism</subject><subject>Plasmids - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAQgC0EokvhFZCFBLcEjx079oFDWfFTqRUXKnGzHGfCZpXEi51VuzcegWfkSXDYFZW4wFxsab4ZzcxHCAVWQo7X2xKEkgU3UpecMVUyyTmUdw_I6k_iIVkxI1khNP9yRp6ktGUMBFPiMTkDpXkFrF6Rm4u3azpHN6VdiDPGn99_jNj2bsaWRhzQJaSho45uHI7Ub9wOY5iQumEIt4n6wxz8JoYRqadNH77ihKlPT8mjzg0Jn53ec3Lz_t3n9cfi6tOHy_XFVeErKaGoeKMqwwwA01rVNe-YN5zp2tWtAeyUgbZx0Jg8NQpkHZOdR0DT8kojtuKcvDr23cXwbY9ptmOfPA6DmzDsk1VagZLS_BMEI0CB1Bl88Re4Dfs45SUyo2TFhWQZ0kfIx5BSxM7uYj-6eLDA7CLIbu3iwS4e7CLI_hZk73Lp81P_fZMPfV94MpKBlyfAJe-GLqvxfbrnal3n4Jl7c-Ru-wEP_z2Avb6-XH7iF7Rdq1s</recordid><startdate>200607</startdate><enddate>200607</enddate><creator>Feissner, Robert E.</creator><creator>Richard‐Fogal, Cynthia L.</creator><creator>Frawley, Elaine R.</creator><creator>Kranz, Robert G.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200607</creationdate><title>ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis</title><author>Feissner, Robert E. ; Richard‐Fogal, Cynthia L. ; Frawley, Elaine R. ; Kranz, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4551-42b64909110886772f0c92087a7d91ef691dba1b9063e3e0f05fce1e9d248eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Apoproteins - metabolism</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Cytochrome c Group - biosynthesis</topic><topic>E coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Heme - metabolism</topic><topic>Hemeproteins - biosynthesis</topic><topic>Hemeproteins - genetics</topic><topic>Hemeproteins - metabolism</topic><topic>Immunology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Molecular Chaperones - metabolism</topic><topic>Plasmids - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feissner, Robert E.</creatorcontrib><creatorcontrib>Richard‐Fogal, Cynthia L.</creatorcontrib><creatorcontrib>Frawley, Elaine R.</creatorcontrib><creatorcontrib>Kranz, Robert G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feissner, Robert E.</au><au>Richard‐Fogal, Cynthia L.</au><au>Frawley, Elaine R.</au><au>Kranz, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2006-07</date><risdate>2006</risdate><volume>61</volume><issue>1</issue><spage>219</spage><epage>231</epage><pages>219-231</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP‐binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead‐end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP‐dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16824107</pmid><doi>10.1111/j.1365-2958.2006.05221.x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2006-07, Vol.61 (1), p.219-231
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_68616559
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Apoproteins - metabolism
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological and medical sciences
Biological Transport
Cytochrome c Group - biosynthesis
E coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genes
Heme - metabolism
Hemeproteins - biosynthesis
Hemeproteins - genetics
Hemeproteins - metabolism
Immunology
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microbiology
Models, Biological
Molecular Chaperones - metabolism
Plasmids - genetics
Recombinant Fusion Proteins - metabolism
title ABC transporter‐mediated release of a haem chaperone allows cytochrome c biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ABC%20transporter%E2%80%90mediated%20release%20of%20a%20haem%20chaperone%20allows%20cytochrome%20c%20biogenesis&rft.jtitle=Molecular%20microbiology&rft.au=Feissner,%20Robert%20E.&rft.date=2006-07&rft.volume=61&rft.issue=1&rft.spage=219&rft.epage=231&rft.pages=219-231&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2006.05221.x&rft_dat=%3Cproquest_cross%3E1084485391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196542350&rft_id=info:pmid/16824107&rfr_iscdi=true