Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase

Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2006-07, Vol.360 (3), p.667-677
Hauptverfasser: Crampton, Donald J., Ohi, Melanie, Qimron, Udi, Walz, Thomas, Richardson, Charles C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 3
container_start_page 667
container_title Journal of molecular biology
container_volume 360
creator Crampton, Donald J.
Ohi, Melanie
Qimron, Udi
Walz, Thomas
Richardson, Charles C.
description Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.
doi_str_mv 10.1016/j.jmb.2006.05.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68615329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228360600619X</els_id><sourcerecordid>17272244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-AC-Sk7eks7vZjyAetGgrFCpYz8tmM6lbkqZmU8F_b0oL3vQ0w_C8L8xDyDWFhAKV43WyrvOEAcgERAJcnZAhBZ3FWnJ9SoYAjMVMczkgFyGsAUDwVJ-TAZVKKZqyIblfVH7V1Nh6F711tsMQNWX0aF3Xn5rth11htFTRFDcYpdFr62sbcDzDyrt-uSRnpa0CXh3niLw_Py0ns3i-mL5MHuax45p1sVUZCgEItnCyFIil4kwXRZ5pRZUA7ixLUeeZ40wynqelcFJlMs2c4qgLPiK3h95t23zuMHSm9sFhVdkNNrtgpJZUcJb9C1LFFGNp2oP0ALq2CaHF0mz3v7XfhoLZyzVr08s1e7kGhOnl9pmbY_kur7H4TRxt9sDdAcDexZfH1gTnceOw8C26zhSN_6P-B2seiCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17272244</pqid></control><display><type>article</type><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</creator><creatorcontrib>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</creatorcontrib><description>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.05.037</identifier><identifier>PMID: 16777142</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arginine - metabolism ; Bacteria ; Bacteriophage T7 - enzymology ; DNA binding ; DNA Primase - chemistry ; DNA Primase - metabolism ; DNA Primase - ultrastructure ; DNA, Single-Stranded - metabolism ; helicase ; heptamer ; hexamer ; Histidine - metabolism ; Hydrolysis ; Models, Biological ; Nucleotides - metabolism ; Phage T7 ; phosphate sensor ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Secondary</subject><ispartof>Journal of molecular biology, 2006-07, Vol.360 (3), p.667-677</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</citedby><cites>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002228360600619X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16777142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crampton, Donald J.</creatorcontrib><creatorcontrib>Ohi, Melanie</creatorcontrib><creatorcontrib>Qimron, Udi</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Richardson, Charles C.</creatorcontrib><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</description><subject>Arginine - metabolism</subject><subject>Bacteria</subject><subject>Bacteriophage T7 - enzymology</subject><subject>DNA binding</subject><subject>DNA Primase - chemistry</subject><subject>DNA Primase - metabolism</subject><subject>DNA Primase - ultrastructure</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>helicase</subject><subject>heptamer</subject><subject>hexamer</subject><subject>Histidine - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Biological</subject><subject>Nucleotides - metabolism</subject><subject>Phage T7</subject><subject>phosphate sensor</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-AC-Sk7eks7vZjyAetGgrFCpYz8tmM6lbkqZmU8F_b0oL3vQ0w_C8L8xDyDWFhAKV43WyrvOEAcgERAJcnZAhBZ3FWnJ9SoYAjMVMczkgFyGsAUDwVJ-TAZVKKZqyIblfVH7V1Nh6F711tsMQNWX0aF3Xn5rth11htFTRFDcYpdFr62sbcDzDyrt-uSRnpa0CXh3niLw_Py0ns3i-mL5MHuax45p1sVUZCgEItnCyFIil4kwXRZ5pRZUA7ixLUeeZ40wynqelcFJlMs2c4qgLPiK3h95t23zuMHSm9sFhVdkNNrtgpJZUcJb9C1LFFGNp2oP0ALq2CaHF0mz3v7XfhoLZyzVr08s1e7kGhOnl9pmbY_kur7H4TRxt9sDdAcDexZfH1gTnceOw8C26zhSN_6P-B2seiCE</recordid><startdate>20060714</startdate><enddate>20060714</enddate><creator>Crampton, Donald J.</creator><creator>Ohi, Melanie</creator><creator>Qimron, Udi</creator><creator>Walz, Thomas</creator><creator>Richardson, Charles C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060714</creationdate><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><author>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arginine - metabolism</topic><topic>Bacteria</topic><topic>Bacteriophage T7 - enzymology</topic><topic>DNA binding</topic><topic>DNA Primase - chemistry</topic><topic>DNA Primase - metabolism</topic><topic>DNA Primase - ultrastructure</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>helicase</topic><topic>heptamer</topic><topic>hexamer</topic><topic>Histidine - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Biological</topic><topic>Nucleotides - metabolism</topic><topic>Phage T7</topic><topic>phosphate sensor</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crampton, Donald J.</creatorcontrib><creatorcontrib>Ohi, Melanie</creatorcontrib><creatorcontrib>Qimron, Udi</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Richardson, Charles C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crampton, Donald J.</au><au>Ohi, Melanie</au><au>Qimron, Udi</au><au>Walz, Thomas</au><au>Richardson, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-07-14</date><risdate>2006</risdate><volume>360</volume><issue>3</issue><spage>667</spage><epage>677</epage><pages>667-677</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16777142</pmid><doi>10.1016/j.jmb.2006.05.037</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2006-07, Vol.360 (3), p.667-677
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_68615329
source MEDLINE; Elsevier ScienceDirect Journals
subjects Arginine - metabolism
Bacteria
Bacteriophage T7 - enzymology
DNA binding
DNA Primase - chemistry
DNA Primase - metabolism
DNA Primase - ultrastructure
DNA, Single-Stranded - metabolism
helicase
heptamer
hexamer
Histidine - metabolism
Hydrolysis
Models, Biological
Nucleotides - metabolism
Phage T7
phosphate sensor
Protein Binding
Protein Structure, Quaternary
Protein Structure, Secondary
title Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligomeric%20States%20of%20Bacteriophage%20T7%20Gene%204%20Primase/Helicase&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Crampton,%20Donald%20J.&rft.date=2006-07-14&rft.volume=360&rft.issue=3&rft.spage=667&rft.epage=677&rft.pages=667-677&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.05.037&rft_dat=%3Cproquest_cross%3E17272244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17272244&rft_id=info:pmid/16777142&rft_els_id=S002228360600619X&rfr_iscdi=true