Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase
Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative sta...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2006-07, Vol.360 (3), p.667-677 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 677 |
---|---|
container_issue | 3 |
container_start_page | 667 |
container_title | Journal of molecular biology |
container_volume | 360 |
creator | Crampton, Donald J. Ohi, Melanie Qimron, Udi Walz, Thomas Richardson, Charles C. |
description | Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio. |
doi_str_mv | 10.1016/j.jmb.2006.05.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68615329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002228360600619X</els_id><sourcerecordid>17272244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-AC-Sk7eks7vZjyAetGgrFCpYz8tmM6lbkqZmU8F_b0oL3vQ0w_C8L8xDyDWFhAKV43WyrvOEAcgERAJcnZAhBZ3FWnJ9SoYAjMVMczkgFyGsAUDwVJ-TAZVKKZqyIblfVH7V1Nh6F711tsMQNWX0aF3Xn5rth11htFTRFDcYpdFr62sbcDzDyrt-uSRnpa0CXh3niLw_Py0ns3i-mL5MHuax45p1sVUZCgEItnCyFIil4kwXRZ5pRZUA7ixLUeeZ40wynqelcFJlMs2c4qgLPiK3h95t23zuMHSm9sFhVdkNNrtgpJZUcJb9C1LFFGNp2oP0ALq2CaHF0mz3v7XfhoLZyzVr08s1e7kGhOnl9pmbY_kur7H4TRxt9sDdAcDexZfH1gTnceOw8C26zhSN_6P-B2seiCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17272244</pqid></control><display><type>article</type><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</creator><creatorcontrib>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</creatorcontrib><description>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2006.05.037</identifier><identifier>PMID: 16777142</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Arginine - metabolism ; Bacteria ; Bacteriophage T7 - enzymology ; DNA binding ; DNA Primase - chemistry ; DNA Primase - metabolism ; DNA Primase - ultrastructure ; DNA, Single-Stranded - metabolism ; helicase ; heptamer ; hexamer ; Histidine - metabolism ; Hydrolysis ; Models, Biological ; Nucleotides - metabolism ; Phage T7 ; phosphate sensor ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Secondary</subject><ispartof>Journal of molecular biology, 2006-07, Vol.360 (3), p.667-677</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</citedby><cites>FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002228360600619X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16777142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crampton, Donald J.</creatorcontrib><creatorcontrib>Ohi, Melanie</creatorcontrib><creatorcontrib>Qimron, Udi</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Richardson, Charles C.</creatorcontrib><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</description><subject>Arginine - metabolism</subject><subject>Bacteria</subject><subject>Bacteriophage T7 - enzymology</subject><subject>DNA binding</subject><subject>DNA Primase - chemistry</subject><subject>DNA Primase - metabolism</subject><subject>DNA Primase - ultrastructure</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>helicase</subject><subject>heptamer</subject><subject>hexamer</subject><subject>Histidine - metabolism</subject><subject>Hydrolysis</subject><subject>Models, Biological</subject><subject>Nucleotides - metabolism</subject><subject>Phage T7</subject><subject>phosphate sensor</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-AC-Sk7eks7vZjyAetGgrFCpYz8tmM6lbkqZmU8F_b0oL3vQ0w_C8L8xDyDWFhAKV43WyrvOEAcgERAJcnZAhBZ3FWnJ9SoYAjMVMczkgFyGsAUDwVJ-TAZVKKZqyIblfVH7V1Nh6F711tsMQNWX0aF3Xn5rth11htFTRFDcYpdFr62sbcDzDyrt-uSRnpa0CXh3niLw_Py0ns3i-mL5MHuax45p1sVUZCgEItnCyFIil4kwXRZ5pRZUA7ixLUeeZ40wynqelcFJlMs2c4qgLPiK3h95t23zuMHSm9sFhVdkNNrtgpJZUcJb9C1LFFGNp2oP0ALq2CaHF0mz3v7XfhoLZyzVr08s1e7kGhOnl9pmbY_kur7H4TRxt9sDdAcDexZfH1gTnceOw8C26zhSN_6P-B2seiCE</recordid><startdate>20060714</startdate><enddate>20060714</enddate><creator>Crampton, Donald J.</creator><creator>Ohi, Melanie</creator><creator>Qimron, Udi</creator><creator>Walz, Thomas</creator><creator>Richardson, Charles C.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060714</creationdate><title>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</title><author>Crampton, Donald J. ; Ohi, Melanie ; Qimron, Udi ; Walz, Thomas ; Richardson, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a79e550e0adc6f5eef7328ddb98717503ca24e8b9c32623b4f5c679649c73e8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Arginine - metabolism</topic><topic>Bacteria</topic><topic>Bacteriophage T7 - enzymology</topic><topic>DNA binding</topic><topic>DNA Primase - chemistry</topic><topic>DNA Primase - metabolism</topic><topic>DNA Primase - ultrastructure</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>helicase</topic><topic>heptamer</topic><topic>hexamer</topic><topic>Histidine - metabolism</topic><topic>Hydrolysis</topic><topic>Models, Biological</topic><topic>Nucleotides - metabolism</topic><topic>Phage T7</topic><topic>phosphate sensor</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crampton, Donald J.</creatorcontrib><creatorcontrib>Ohi, Melanie</creatorcontrib><creatorcontrib>Qimron, Udi</creatorcontrib><creatorcontrib>Walz, Thomas</creatorcontrib><creatorcontrib>Richardson, Charles C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crampton, Donald J.</au><au>Ohi, Melanie</au><au>Qimron, Udi</au><au>Walz, Thomas</au><au>Richardson, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2006-07-14</date><risdate>2006</risdate><volume>360</volume><issue>3</issue><spage>667</spage><epage>677</epage><pages>667-677</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Electron microscopic and crystallographic data have shown that the gene 4 primase/helicase encoded by bacteriophage T7 can form both hexamers and heptamers. After cross-linking with glutaraldehyde to stabilize the oligomeric protein, hexamers and heptamers can be distinguished either by negative stain electron microscopy or electrophoretic analysis using polyacrylamide gels. We find that hexamers predominate in the presence of either dTTP or β,γ-methylene dTTP whereas the ratio between hexamers and heptamers is nearly the converse in the presence of dTDP. When formed, heptamers are unable to efficiently bind either single-stranded DNA or double-stranded DNA. We postulate that a switch between heptamer to hexamer may provide a ring-opening mechanism for the single-stranded DNA binding pathway. Accordingly, we observe that in the presence of both nucleoside di- and triphosphates the gene 4 protein exists as a hexamer when bound to single-stranded DNA and as a mixture of heptamer and hexamer when not bound to single-stranded DNA. Furthermore, altering regions of the gene 4 protein postulated to be conformational switches for dTTP-dependent helicase activity leads to modulation of the heptamer to hexamer ratio.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16777142</pmid><doi>10.1016/j.jmb.2006.05.037</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2006-07, Vol.360 (3), p.667-677 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_68615329 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Arginine - metabolism Bacteria Bacteriophage T7 - enzymology DNA binding DNA Primase - chemistry DNA Primase - metabolism DNA Primase - ultrastructure DNA, Single-Stranded - metabolism helicase heptamer hexamer Histidine - metabolism Hydrolysis Models, Biological Nucleotides - metabolism Phage T7 phosphate sensor Protein Binding Protein Structure, Quaternary Protein Structure, Secondary |
title | Oligomeric States of Bacteriophage T7 Gene 4 Primase/Helicase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligomeric%20States%20of%20Bacteriophage%20T7%20Gene%204%20Primase/Helicase&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Crampton,%20Donald%20J.&rft.date=2006-07-14&rft.volume=360&rft.issue=3&rft.spage=667&rft.epage=677&rft.pages=667-677&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2006.05.037&rft_dat=%3Cproquest_cross%3E17272244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17272244&rft_id=info:pmid/16777142&rft_els_id=S002228360600619X&rfr_iscdi=true |