The effect of energy feedbacks on continental strength
The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determin...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2006-07, Vol.442 (7098), p.67-70 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 7098 |
container_start_page | 67 |
container_title | Nature (London) |
container_volume | 442 |
creator | Regenauer-Lieb, Klaus Weinberg, Roberto F. Rosenbaum, Gideon |
description | The strong shall be weak
The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest.
The classical strength profile of continents
1
,
2
is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation. |
doi_str_mv | 10.1038/nature04868 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68612732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185449966</galeid><sourcerecordid>A185449966</sourcerecordid><originalsourceid>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</originalsourceid><addsrcrecordid>eNqF0t1rUzEYB-AgDlenV97LQVCQeWaSk5OPy1L8GAwFrXgZ0vTN2ZmnSZfkgPvvTWmh6-iQXASSJ2_ILy9Crwi-ILiRH73JYwTMJJdP0IQwwWvGpXiKJhhTWWPZ8FP0PKUbjHFLBHuGTgmXtGEtniA-v4YKnAObq-Aq8BC7u8oBLBfG_klV8JUNPvcefDZDlXIE3-XrF-jEmSHBy918hn59_jSffa2vvn-5nE2vasNFm2tJpDKMCMKYoRws5sAZNsRZTJQCxghYqrAQtCHNUratEngBxQphVHlcc4bebeuuY7gdIWW96pOFYTAewpg0l5xQ0dD_woZTSYjcVHzzAN6EMfryCE0xK_lIJgqqt6gzA-jeu5Cjsd0mHTMED64vy1MiW8aU4nxf9MDbdX-r76OLI6iMJax6e7Tq-4MDm4-Av7kzY0r68uePQ3v-uJ3Of8--HdU2hpQiOL2O_crEO02w3jSVvtdURb_eRTYuVrDc210XFfB2B0yyZnDReNunvRNSqYa2xX3YulS2fAdxn_2xe_8B-9fdVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204517847</pqid></control><display><type>article</type><title>The effect of energy feedbacks on continental strength</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</creator><creatorcontrib>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</creatorcontrib><description>The strong shall be weak
The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest.
The classical strength profile of continents
1
,
2
is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature04868</identifier><identifier>PMID: 16823450</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Continents ; Earth sciences ; Earth, ocean, space ; Energy ; Exact sciences and technology ; Feedback ; Geophysics ; Humanities and Social Sciences ; Internal geophysics ; letter ; multidisciplinary ; Plate tectonics ; Rheology ; Science ; Science (multidisciplinary) ; Solid-earth geophysics, tectonophysics, gravimetry ; Strain</subject><ispartof>Nature (London), 2006-07, Vol.442 (7098), p.67-70</ispartof><rights>Springer Nature Limited 2006</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 6, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</citedby><cites>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature04868$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature04868$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17899325$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16823450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regenauer-Lieb, Klaus</creatorcontrib><creatorcontrib>Weinberg, Roberto F.</creatorcontrib><creatorcontrib>Rosenbaum, Gideon</creatorcontrib><title>The effect of energy feedbacks on continental strength</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The strong shall be weak
The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest.
The classical strength profile of continents
1
,
2
is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</description><subject>Continents</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>Humanities and Social Sciences</subject><subject>Internal geophysics</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Plate tectonics</subject><subject>Rheology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Strain</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t1rUzEYB-AgDlenV97LQVCQeWaSk5OPy1L8GAwFrXgZ0vTN2ZmnSZfkgPvvTWmh6-iQXASSJ2_ILy9Crwi-ILiRH73JYwTMJJdP0IQwwWvGpXiKJhhTWWPZ8FP0PKUbjHFLBHuGTgmXtGEtniA-v4YKnAObq-Aq8BC7u8oBLBfG_klV8JUNPvcefDZDlXIE3-XrF-jEmSHBy918hn59_jSffa2vvn-5nE2vasNFm2tJpDKMCMKYoRws5sAZNsRZTJQCxghYqrAQtCHNUratEngBxQphVHlcc4bebeuuY7gdIWW96pOFYTAewpg0l5xQ0dD_woZTSYjcVHzzAN6EMfryCE0xK_lIJgqqt6gzA-jeu5Cjsd0mHTMED64vy1MiW8aU4nxf9MDbdX-r76OLI6iMJax6e7Tq-4MDm4-Av7kzY0r68uePQ3v-uJ3Of8--HdU2hpQiOL2O_crEO02w3jSVvtdURb_eRTYuVrDc210XFfB2B0yyZnDReNunvRNSqYa2xX3YulS2fAdxn_2xe_8B-9fdVA</recordid><startdate>20060706</startdate><enddate>20060706</enddate><creator>Regenauer-Lieb, Klaus</creator><creator>Weinberg, Roberto F.</creator><creator>Rosenbaum, Gideon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20060706</creationdate><title>The effect of energy feedbacks on continental strength</title><author>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Continents</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>Humanities and Social Sciences</topic><topic>Internal geophysics</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Plate tectonics</topic><topic>Rheology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regenauer-Lieb, Klaus</creatorcontrib><creatorcontrib>Weinberg, Roberto F.</creatorcontrib><creatorcontrib>Rosenbaum, Gideon</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regenauer-Lieb, Klaus</au><au>Weinberg, Roberto F.</au><au>Rosenbaum, Gideon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of energy feedbacks on continental strength</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2006-07-06</date><risdate>2006</risdate><volume>442</volume><issue>7098</issue><spage>67</spage><epage>70</epage><pages>67-70</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The strong shall be weak
The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest.
The classical strength profile of continents
1
,
2
is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16823450</pmid><doi>10.1038/nature04868</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2006-07, Vol.442 (7098), p.67-70 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_68612732 |
source | SpringerLink Journals; Nature Journals Online |
subjects | Continents Earth sciences Earth, ocean, space Energy Exact sciences and technology Feedback Geophysics Humanities and Social Sciences Internal geophysics letter multidisciplinary Plate tectonics Rheology Science Science (multidisciplinary) Solid-earth geophysics, tectonophysics, gravimetry Strain |
title | The effect of energy feedbacks on continental strength |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20energy%20feedbacks%20on%20continental%20strength&rft.jtitle=Nature%20(London)&rft.au=Regenauer-Lieb,%20Klaus&rft.date=2006-07-06&rft.volume=442&rft.issue=7098&rft.spage=67&rft.epage=70&rft.pages=67-70&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature04868&rft_dat=%3Cgale_proqu%3EA185449966%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204517847&rft_id=info:pmid/16823450&rft_galeid=A185449966&rfr_iscdi=true |