The effect of energy feedbacks on continental strength

The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2006-07, Vol.442 (7098), p.67-70
Hauptverfasser: Regenauer-Lieb, Klaus, Weinberg, Roberto F., Rosenbaum, Gideon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 7098
container_start_page 67
container_title Nature (London)
container_volume 442
creator Regenauer-Lieb, Klaus
Weinberg, Roberto F.
Rosenbaum, Gideon
description The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest. The classical strength profile of continents 1 , 2 is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.
doi_str_mv 10.1038/nature04868
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68612732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185449966</galeid><sourcerecordid>A185449966</sourcerecordid><originalsourceid>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</originalsourceid><addsrcrecordid>eNqF0t1rUzEYB-AgDlenV97LQVCQeWaSk5OPy1L8GAwFrXgZ0vTN2ZmnSZfkgPvvTWmh6-iQXASSJ2_ILy9Crwi-ILiRH73JYwTMJJdP0IQwwWvGpXiKJhhTWWPZ8FP0PKUbjHFLBHuGTgmXtGEtniA-v4YKnAObq-Aq8BC7u8oBLBfG_klV8JUNPvcefDZDlXIE3-XrF-jEmSHBy918hn59_jSffa2vvn-5nE2vasNFm2tJpDKMCMKYoRws5sAZNsRZTJQCxghYqrAQtCHNUratEngBxQphVHlcc4bebeuuY7gdIWW96pOFYTAewpg0l5xQ0dD_woZTSYjcVHzzAN6EMfryCE0xK_lIJgqqt6gzA-jeu5Cjsd0mHTMED64vy1MiW8aU4nxf9MDbdX-r76OLI6iMJax6e7Tq-4MDm4-Av7kzY0r68uePQ3v-uJ3Of8--HdU2hpQiOL2O_crEO02w3jSVvtdURb_eRTYuVrDc210XFfB2B0yyZnDReNunvRNSqYa2xX3YulS2fAdxn_2xe_8B-9fdVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204517847</pqid></control><display><type>article</type><title>The effect of energy feedbacks on continental strength</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</creator><creatorcontrib>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</creatorcontrib><description>The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest. The classical strength profile of continents 1 , 2 is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature04868</identifier><identifier>PMID: 16823450</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Continents ; Earth sciences ; Earth, ocean, space ; Energy ; Exact sciences and technology ; Feedback ; Geophysics ; Humanities and Social Sciences ; Internal geophysics ; letter ; multidisciplinary ; Plate tectonics ; Rheology ; Science ; Science (multidisciplinary) ; Solid-earth geophysics, tectonophysics, gravimetry ; Strain</subject><ispartof>Nature (London), 2006-07, Vol.442 (7098), p.67-70</ispartof><rights>Springer Nature Limited 2006</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 6, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</citedby><cites>FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature04868$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature04868$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17899325$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16823450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regenauer-Lieb, Klaus</creatorcontrib><creatorcontrib>Weinberg, Roberto F.</creatorcontrib><creatorcontrib>Rosenbaum, Gideon</creatorcontrib><title>The effect of energy feedbacks on continental strength</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest. The classical strength profile of continents 1 , 2 is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</description><subject>Continents</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Geophysics</subject><subject>Humanities and Social Sciences</subject><subject>Internal geophysics</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Plate tectonics</subject><subject>Rheology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Strain</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0t1rUzEYB-AgDlenV97LQVCQeWaSk5OPy1L8GAwFrXgZ0vTN2ZmnSZfkgPvvTWmh6-iQXASSJ2_ILy9Crwi-ILiRH73JYwTMJJdP0IQwwWvGpXiKJhhTWWPZ8FP0PKUbjHFLBHuGTgmXtGEtniA-v4YKnAObq-Aq8BC7u8oBLBfG_klV8JUNPvcefDZDlXIE3-XrF-jEmSHBy918hn59_jSffa2vvn-5nE2vasNFm2tJpDKMCMKYoRws5sAZNsRZTJQCxghYqrAQtCHNUratEngBxQphVHlcc4bebeuuY7gdIWW96pOFYTAewpg0l5xQ0dD_woZTSYjcVHzzAN6EMfryCE0xK_lIJgqqt6gzA-jeu5Cjsd0mHTMED64vy1MiW8aU4nxf9MDbdX-r76OLI6iMJax6e7Tq-4MDm4-Av7kzY0r68uePQ3v-uJ3Of8--HdU2hpQiOL2O_crEO02w3jSVvtdURb_eRTYuVrDc210XFfB2B0yyZnDReNunvRNSqYa2xX3YulS2fAdxn_2xe_8B-9fdVA</recordid><startdate>20060706</startdate><enddate>20060706</enddate><creator>Regenauer-Lieb, Klaus</creator><creator>Weinberg, Roberto F.</creator><creator>Rosenbaum, Gideon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20060706</creationdate><title>The effect of energy feedbacks on continental strength</title><author>Regenauer-Lieb, Klaus ; Weinberg, Roberto F. ; Rosenbaum, Gideon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a675t-8189a417144a26ec06e640a1fc0199e441ec290772313d855970be4a277a91033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Continents</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Geophysics</topic><topic>Humanities and Social Sciences</topic><topic>Internal geophysics</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Plate tectonics</topic><topic>Rheology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regenauer-Lieb, Klaus</creatorcontrib><creatorcontrib>Weinberg, Roberto F.</creatorcontrib><creatorcontrib>Rosenbaum, Gideon</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regenauer-Lieb, Klaus</au><au>Weinberg, Roberto F.</au><au>Rosenbaum, Gideon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of energy feedbacks on continental strength</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2006-07-06</date><risdate>2006</risdate><volume>442</volume><issue>7098</issue><spage>67</spage><epage>70</epage><pages>67-70</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The strong shall be weak The strength of the Earth's crust controls the evolution of continents, from mountain formation to the distribution of earthquakes. How strong are the continents? Numerical calculations have been used to resolve the energy, momentum and continuum equations that determine continental deformation and strength. The continents turn out to be weaker than expected due to energy feedback processes. This explains various enigmatic observations related to continental behaviour, from the lack of seismicity in the mantle below continents, to the development of major weaknesses just where continents should be strongest. The classical strength profile of continents 1 , 2 is derived from a quasi-static view of their rheological response to stress—one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle–ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle–ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16823450</pmid><doi>10.1038/nature04868</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2006-07, Vol.442 (7098), p.67-70
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_68612732
source SpringerLink Journals; Nature Journals Online
subjects Continents
Earth sciences
Earth, ocean, space
Energy
Exact sciences and technology
Feedback
Geophysics
Humanities and Social Sciences
Internal geophysics
letter
multidisciplinary
Plate tectonics
Rheology
Science
Science (multidisciplinary)
Solid-earth geophysics, tectonophysics, gravimetry
Strain
title The effect of energy feedbacks on continental strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20energy%20feedbacks%20on%20continental%20strength&rft.jtitle=Nature%20(London)&rft.au=Regenauer-Lieb,%20Klaus&rft.date=2006-07-06&rft.volume=442&rft.issue=7098&rft.spage=67&rft.epage=70&rft.pages=67-70&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature04868&rft_dat=%3Cgale_proqu%3EA185449966%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204517847&rft_id=info:pmid/16823450&rft_galeid=A185449966&rfr_iscdi=true