Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria
Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges 1 —where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natur...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2005-09, Vol.437 (7058), p.534-538 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 7058 |
container_start_page | 534 |
container_title | Nature (London) |
container_volume | 437 |
creator | Rubin, K. H. van der Zander, I. Smith, M. C. Bergmanis, E. C. |
description | Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges
1
—where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent–daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use
210
Pb–
226
Ra–
230
Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes.
210
Pb deficits of up to 15 per cent relative to
226
Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of
210
Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between
210
Pb-deficits, (
226
Ra/
230
Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model
2
can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied. |
doi_str_mv | 10.1038/nature03993 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68611395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185468960</galeid><sourcerecordid>A185468960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-c1e880f579e41a74136fde86934f16c8c62ffa55f4c97a890e4034eb1d707a8b3</originalsourceid><addsrcrecordid>eNp10k9rFDEUAPAgil2rJ-8yCAqiU5NJJskcl6Vqof6hrnoM2czLmDLJ7CYzYG9-B7-hn8SUXWgLIzk8kvzyHrw8hJ4SfEIwlW-DHqcImDYNvYcWhAleMi7FfbTAuJIllpQfoUcpXWKMayLYQ3REOBFCSLFA3z-64Pzki7QFaIveeTcWdojFYECHIrq2g8LrzuvRJV_YOPiiIvjL5u_vP1XFL_R1pHj9s2hdgt3kereJTj9GD6zuEzw5xGP07d3pevWhPP_8_my1PC8NFZSWhoCU2NaiAUa0YIRy24LkDWWWcCMNr6zVdW2ZaYSWDQaGKYMNaQXO-w09Ri_3ebdx2E2QRuVdMtD3OsAwJcUlJ4Q2dYblHna6B-WCHcaoTQcBou6HANbl4yWRdW5dw3H2z2e82bqduo1OZlBeLXhnZrO-uvMgmxF-jZ2eUlJnXy_u2tf_t8v1j9WnWW3ikFIEq7bReR2vFMHqekzUrTHJ-tmhbdPGQ3tjD3ORwYsD0Mno3kYdjEs3TpCK5cZm92bvUr4KHUR1OUwx5C-frfsPMYrRng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68611395</pqid></control><display><type>article</type><title>Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rubin, K. H. ; van der Zander, I. ; Smith, M. C. ; Bergmanis, E. C.</creator><creatorcontrib>Rubin, K. H. ; van der Zander, I. ; Smith, M. C. ; Bergmanis, E. C.</creatorcontrib><description>Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges
1
—where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent–daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use
210
Pb–
226
Ra–
230
Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes.
210
Pb deficits of up to 15 per cent relative to
226
Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of
210
Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between
210
Pb-deficits, (
226
Ra/
230
Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model
2
can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature03993</identifier><identifier>PMID: 16177787</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Humanities and Social Sciences ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Isotope geochemistry ; Isotope geochemistry. Geochronology ; letter ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2005-09, Vol.437 (7058), p.534-538</ispartof><rights>Springer Nature Limited 2005</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-c1e880f579e41a74136fde86934f16c8c62ffa55f4c97a890e4034eb1d707a8b3</citedby><cites>FETCH-LOGICAL-c3733-c1e880f579e41a74136fde86934f16c8c62ffa55f4c97a890e4034eb1d707a8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature03993$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature03993$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17124113$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16177787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rubin, K. H.</creatorcontrib><creatorcontrib>van der Zander, I.</creatorcontrib><creatorcontrib>Smith, M. C.</creatorcontrib><creatorcontrib>Bergmanis, E. C.</creatorcontrib><title>Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges
1
—where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent–daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use
210
Pb–
226
Ra–
230
Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes.
210
Pb deficits of up to 15 per cent relative to
226
Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of
210
Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between
210
Pb-deficits, (
226
Ra/
230
Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model
2
can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied.</description><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Isotope geochemistry</subject><subject>Isotope geochemistry. Geochronology</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp10k9rFDEUAPAgil2rJ-8yCAqiU5NJJskcl6Vqof6hrnoM2czLmDLJ7CYzYG9-B7-hn8SUXWgLIzk8kvzyHrw8hJ4SfEIwlW-DHqcImDYNvYcWhAleMi7FfbTAuJIllpQfoUcpXWKMayLYQ3REOBFCSLFA3z-64Pzki7QFaIveeTcWdojFYECHIrq2g8LrzuvRJV_YOPiiIvjL5u_vP1XFL_R1pHj9s2hdgt3kereJTj9GD6zuEzw5xGP07d3pevWhPP_8_my1PC8NFZSWhoCU2NaiAUa0YIRy24LkDWWWcCMNr6zVdW2ZaYSWDQaGKYMNaQXO-w09Ri_3ebdx2E2QRuVdMtD3OsAwJcUlJ4Q2dYblHna6B-WCHcaoTQcBou6HANbl4yWRdW5dw3H2z2e82bqduo1OZlBeLXhnZrO-uvMgmxF-jZ2eUlJnXy_u2tf_t8v1j9WnWW3ikFIEq7bReR2vFMHqekzUrTHJ-tmhbdPGQ3tjD3ORwYsD0Mno3kYdjEs3TpCK5cZm92bvUr4KHUR1OUwx5C-frfsPMYrRng</recordid><startdate>20050922</startdate><enddate>20050922</enddate><creator>Rubin, K. H.</creator><creator>van der Zander, I.</creator><creator>Smith, M. C.</creator><creator>Bergmanis, E. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7X8</scope></search><sort><creationdate>20050922</creationdate><title>Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria</title><author>Rubin, K. H. ; van der Zander, I. ; Smith, M. C. ; Bergmanis, E. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-c1e880f579e41a74136fde86934f16c8c62ffa55f4c97a890e4034eb1d707a8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Isotope geochemistry</topic><topic>Isotope geochemistry. Geochronology</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubin, K. H.</creatorcontrib><creatorcontrib>van der Zander, I.</creatorcontrib><creatorcontrib>Smith, M. C.</creatorcontrib><creatorcontrib>Bergmanis, E. C.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubin, K. H.</au><au>van der Zander, I.</au><au>Smith, M. C.</au><au>Bergmanis, E. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2005-09-22</date><risdate>2005</risdate><volume>437</volume><issue>7058</issue><spage>534</spage><epage>538</epage><pages>534-538</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Although 70 per cent of global crustal magmatism occurs at mid-ocean ridges
1
—where the heat budget controls crustal structure, hydrothermal activity and a vibrant biosphere—the tempo of magmatic inputs in these regions remains poorly understood. Such timescales can be assessed, however, with natural radioactive-decay-chain nuclides, because chemical disruption to secular equilibrium systems initiates parent–daughter disequilibria, which re-equilibrate by the shorter half-life in a pair. Here we use
210
Pb–
226
Ra–
230
Th radioactive disequilibria and other geochemical attributes in oceanic basalts less than 20 years old to infer that melts of the Earth's mantle can be transported, accumulated and erupted in a few decades. This implies that magmatic conditions can fluctuate rapidly at ridge volcanoes.
210
Pb deficits of up to 15 per cent relative to
226
Ra occur in normal mid-ocean ridge basalts, with the largest deficits in the most magnesium-rich lavas. The 22-year half-life of
210
Pb requires very recent fractionation of these two uranium-series nuclides. Relationships between
210
Pb-deficits, (
226
Ra/
230
Th) activity ratios and compatible trace-element ratios preclude crustal-magma differentiation or daughter-isotope degassing as the main causes for the signal. A mantle-melting model
2
can simulate observed disequilibria but preservation requires a subsequent mechanism to transport melt rapidly. The likelihood of magmatic disequilibria occurring before melt enters shallow crustal magma bodies also limits differentiation and heat replenishment timescales to decades at the localities studied.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16177787</pmid><doi>10.1038/nature03993</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2005-09, Vol.437 (7058), p.534-538 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_68611395 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Crystalline rocks Earth sciences Earth, ocean, space Exact sciences and technology Humanities and Social Sciences Igneous and metamorphic rocks petrology, volcanic processes, magmas Isotope geochemistry Isotope geochemistry. Geochronology letter multidisciplinary Science Science (multidisciplinary) |
title | Minimum speed limit for ocean ridge magmatism from 210Pb–226Ra–230Th disequilibria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimum%20speed%20limit%20for%20ocean%20ridge%20magmatism%20from%20210Pb%E2%80%93226Ra%E2%80%93230Th%20disequilibria&rft.jtitle=Nature%20(London)&rft.au=Rubin,%20K.%20H.&rft.date=2005-09-22&rft.volume=437&rft.issue=7058&rft.spage=534&rft.epage=538&rft.pages=534-538&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature03993&rft_dat=%3Cgale_proqu%3EA185468960%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68611395&rft_id=info:pmid/16177787&rft_galeid=A185468960&rfr_iscdi=true |