On the accuracy of density functional theory for iron-sulfur clusters
A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground s...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 2006-09, Vol.27 (12), p.1385-1397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1397 |
---|---|
container_issue | 12 |
container_start_page | 1385 |
container_title | Journal of computational chemistry |
container_volume | 27 |
creator | Szilagyi, Robert K. Winslow, Mark A. |
description | A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe‐2S] and [Mo‐3Fe‐4S] clusters. Using well‐defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe‐4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X‐ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple‐ζ level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart–Dresden potential with a triple‐ζ valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron–sulfur clusters, such as hydrogenase H‐cluster and nitrogenase FeMo‐co will follow. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1385–1397, 2006 |
doi_str_mv | 10.1002/jcc.20449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68608189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68608189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4899-ac28defa9fe103cbcdff503c77c132ef6418a34ef7a18b5758a47e313ea7c73c3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlYP_gFZPAgetk02u_k4SumHUuzBz1tI0wS3bjc12aD996a2KgjOZYbhmRfmAeAUwS6CMOstlOpmMM_5HmgjyEnKGX3eB22IeJYyUqAWOPJ-ASHEBckPQQsRyhhHqA0G0zppXnQilQpOqnViTTLXtS-bdWJCrZrS1rLaINbFjXVJ6Wyd-lCZ4BJVBd9o54_BgZGV1ye73gEPw8F9f5xOpqPr_tUkVTnjPJUqY3NtJDcaQaxmam5MEQdKFcKZNiRHTOJcGyoRmxW0YDKnGiOsJVUUK9wBF9vclbNvQftGLEuvdFXJWtvgBWEEMsR4BM__gAsbXPzEiywW2ViK0OUWUs5677QRK1cupVsLBMVGrIhixZfYyJ7tAsNsqee_5M5kBHpb4L2s9Pr_JHHT739HptuLMjr8-LmQ7lUQimkhnm5Hgo3uHseEDAXCn-7rkS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222261096</pqid></control><display><type>article</type><title>On the accuracy of density functional theory for iron-sulfur clusters</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Szilagyi, Robert K. ; Winslow, Mark A.</creator><creatorcontrib>Szilagyi, Robert K. ; Winslow, Mark A.</creatorcontrib><description>A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe‐2S] and [Mo‐3Fe‐4S] clusters. Using well‐defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe‐4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X‐ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple‐ζ level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart–Dresden potential with a triple‐ζ valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron–sulfur clusters, such as hydrogenase H‐cluster and nitrogenase FeMo‐co will follow. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1385–1397, 2006</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.20449</identifier><identifier>PMID: 16788911</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Chemistry ; Computer Simulation ; density functional theory ; Iron ; iron-sulfur clusters ; Iron-Sulfur Proteins - chemistry ; Models, Molecular ; Molecular structure ; Protein Conformation ; spectroscopic calibration ; Sulfur ; Theory</subject><ispartof>Journal of computational chemistry, 2006-09, Vol.27 (12), p.1385-1397</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Sep 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4899-ac28defa9fe103cbcdff503c77c132ef6418a34ef7a18b5758a47e313ea7c73c3</citedby><cites>FETCH-LOGICAL-c4899-ac28defa9fe103cbcdff503c77c132ef6418a34ef7a18b5758a47e313ea7c73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.20449$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.20449$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16788911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szilagyi, Robert K.</creatorcontrib><creatorcontrib>Winslow, Mark A.</creatorcontrib><title>On the accuracy of density functional theory for iron-sulfur clusters</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe‐2S] and [Mo‐3Fe‐4S] clusters. Using well‐defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe‐4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X‐ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple‐ζ level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart–Dresden potential with a triple‐ζ valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron–sulfur clusters, such as hydrogenase H‐cluster and nitrogenase FeMo‐co will follow. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1385–1397, 2006</description><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>density functional theory</subject><subject>Iron</subject><subject>iron-sulfur clusters</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Protein Conformation</subject><subject>spectroscopic calibration</subject><subject>Sulfur</subject><subject>Theory</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlYP_gFZPAgetk02u_k4SumHUuzBz1tI0wS3bjc12aD996a2KgjOZYbhmRfmAeAUwS6CMOstlOpmMM_5HmgjyEnKGX3eB22IeJYyUqAWOPJ-ASHEBckPQQsRyhhHqA0G0zppXnQilQpOqnViTTLXtS-bdWJCrZrS1rLaINbFjXVJ6Wyd-lCZ4BJVBd9o54_BgZGV1ye73gEPw8F9f5xOpqPr_tUkVTnjPJUqY3NtJDcaQaxmam5MEQdKFcKZNiRHTOJcGyoRmxW0YDKnGiOsJVUUK9wBF9vclbNvQftGLEuvdFXJWtvgBWEEMsR4BM__gAsbXPzEiywW2ViK0OUWUs5677QRK1cupVsLBMVGrIhixZfYyJ7tAsNsqee_5M5kBHpb4L2s9Pr_JHHT739HptuLMjr8-LmQ7lUQimkhnm5Hgo3uHseEDAXCn-7rkS0</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Szilagyi, Robert K.</creator><creator>Winslow, Mark A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200609</creationdate><title>On the accuracy of density functional theory for iron-sulfur clusters</title><author>Szilagyi, Robert K. ; Winslow, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4899-ac28defa9fe103cbcdff503c77c132ef6418a34ef7a18b5758a47e313ea7c73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>density functional theory</topic><topic>Iron</topic><topic>iron-sulfur clusters</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Protein Conformation</topic><topic>spectroscopic calibration</topic><topic>Sulfur</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szilagyi, Robert K.</creatorcontrib><creatorcontrib>Winslow, Mark A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szilagyi, Robert K.</au><au>Winslow, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the accuracy of density functional theory for iron-sulfur clusters</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2006-09</date><risdate>2006</risdate><volume>27</volume><issue>12</issue><spage>1385</spage><epage>1397</epage><pages>1385-1397</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe‐2S] and [Mo‐3Fe‐4S] clusters. Using well‐defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe‐4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X‐ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple‐ζ level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart–Dresden potential with a triple‐ζ valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron–sulfur clusters, such as hydrogenase H‐cluster and nitrogenase FeMo‐co will follow. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1385–1397, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16788911</pmid><doi>10.1002/jcc.20449</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 2006-09, Vol.27 (12), p.1385-1397 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_proquest_miscellaneous_68608189 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Chemistry Computer Simulation density functional theory Iron iron-sulfur clusters Iron-Sulfur Proteins - chemistry Models, Molecular Molecular structure Protein Conformation spectroscopic calibration Sulfur Theory |
title | On the accuracy of density functional theory for iron-sulfur clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20accuracy%20of%20density%20functional%20theory%20for%20iron-sulfur%20clusters&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Szilagyi,%20Robert%20K.&rft.date=2006-09&rft.volume=27&rft.issue=12&rft.spage=1385&rft.epage=1397&rft.pages=1385-1397&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.20449&rft_dat=%3Cproquest_cross%3E68608189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222261096&rft_id=info:pmid/16788911&rfr_iscdi=true |