Proteolytic and lipolytic responses to starvation
Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending...
Gespeichert in:
Veröffentlicht in: | Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 7 |
container_start_page | 830 |
container_title | Nutrition (Burbank, Los Angeles County, Calif.) |
container_volume | 22 |
creator | Finn, Patrick F. Dice, J. Fred |
description | Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation. |
doi_str_mv | 10.1016/j.nut.2006.04.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68596134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899900706001766</els_id><sourcerecordid>68596134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</originalsourceid><addsrcrecordid>eNp90U2L1TAUBuAginNn9Ae40Quiu9Zz8tE2uJLBUWFAQWcd0vRUcultrkk6MP_eXFoYcOEqBJ7zcvKGsVcINQI2Hw71vOSaAzQ1yBqge8J22LWiQi7lU7aDTutKA7QX7DKlAwCgbvRzdoFNh0rqdsfwRwyZwvSQvdvbedhP_rTdIqVTmBOlfQ77lG28t9mH-QV7Ntop0cvtvGJ3N59_XX-tbr9_-Xb96bZyUutciRF6AaAsNVrQqEgAqVaSc-2AnHphVa9GaHtJHR-6kRA48W7gjUPZKS2u2Ps19xTDn4VSNkefHE2TnSksyTQFNShkgW__gYewxLnsZhCFBq4Uh6JwVS6GlCKN5hT90cYHg2DObZqDKW2ac5sGpCltlpnXW_LSH2l4nNjqK-DdBmxydhqjnZ1Pj67Vimt-DnqzutEGY3_HYu5-ckABWP5ofe3HVVCp9N5TNMl5mh0NPpLLZgj-P4v-BVHwmlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139025520</pqid></control><display><type>article</type><title>Proteolytic and lipolytic responses to starvation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Finn, Patrick F. ; Dice, J. Fred</creator><creatorcontrib>Finn, Patrick F. ; Dice, J. Fred</creatorcontrib><description>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2006.04.008</identifier><identifier>PMID: 16815497</identifier><identifier>CODEN: NUTRER</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>acetyl coenzyme A ; Acyl Coenzyme A - metabolism ; Autophagy ; biochemical pathways ; Biological and medical sciences ; Energy sources ; Enzyme Activation ; Enzymes ; Fatty acids ; Fatty Acids, Nonesterified - metabolism ; Feeding. Feeding behavior ; food deprivation ; free fatty acids ; Fundamental and applied biological sciences. Psychology ; gluconeogenesis ; Growth hormones ; hormone receptors ; Humans ; Ketone bodies ; Ketone Bodies - metabolism ; Ketones ; Lipids ; Lipolysis ; literature reviews ; long term effects ; Lysosomes - metabolism ; Molecular Chaperones - physiology ; Muscle Proteins - metabolism ; Muscle, Skeletal - chemistry ; Musculoskeletal system ; musculoskeletal system physiology ; Peptide Hydrolases - metabolism ; Proteasome Endopeptidase Complex - metabolism ; Protein degradation ; Proteins ; proteolysis ; Starvation ; Starvation - metabolism ; Tissues ; tricarboxylic acid cycle ; Triglycerides - metabolism ; Ubiquitin ; Ubiquitin - metabolism ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</citedby><cites>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1139025520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17952928$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16815497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finn, Patrick F.</creatorcontrib><creatorcontrib>Dice, J. Fred</creatorcontrib><title>Proteolytic and lipolytic responses to starvation</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><addtitle>Nutrition</addtitle><description>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</description><subject>acetyl coenzyme A</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Autophagy</subject><subject>biochemical pathways</subject><subject>Biological and medical sciences</subject><subject>Energy sources</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>food deprivation</subject><subject>free fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gluconeogenesis</subject><subject>Growth hormones</subject><subject>hormone receptors</subject><subject>Humans</subject><subject>Ketone bodies</subject><subject>Ketone Bodies - metabolism</subject><subject>Ketones</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>literature reviews</subject><subject>long term effects</subject><subject>Lysosomes - metabolism</subject><subject>Molecular Chaperones - physiology</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - chemistry</subject><subject>Musculoskeletal system</subject><subject>musculoskeletal system physiology</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein degradation</subject><subject>Proteins</subject><subject>proteolysis</subject><subject>Starvation</subject><subject>Starvation - metabolism</subject><subject>Tissues</subject><subject>tricarboxylic acid cycle</subject><subject>Triglycerides - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U2L1TAUBuAginNn9Ae40Quiu9Zz8tE2uJLBUWFAQWcd0vRUcultrkk6MP_eXFoYcOEqBJ7zcvKGsVcINQI2Hw71vOSaAzQ1yBqge8J22LWiQi7lU7aDTutKA7QX7DKlAwCgbvRzdoFNh0rqdsfwRwyZwvSQvdvbedhP_rTdIqVTmBOlfQ77lG28t9mH-QV7Ntop0cvtvGJ3N59_XX-tbr9_-Xb96bZyUutciRF6AaAsNVrQqEgAqVaSc-2AnHphVa9GaHtJHR-6kRA48W7gjUPZKS2u2Ps19xTDn4VSNkefHE2TnSksyTQFNShkgW__gYewxLnsZhCFBq4Uh6JwVS6GlCKN5hT90cYHg2DObZqDKW2ac5sGpCltlpnXW_LSH2l4nNjqK-DdBmxydhqjnZ1Pj67Vimt-DnqzutEGY3_HYu5-ckABWP5ofe3HVVCp9N5TNMl5mh0NPpLLZgj-P4v-BVHwmlk</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Finn, Patrick F.</creator><creator>Dice, J. Fred</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Proteolytic and lipolytic responses to starvation</title><author>Finn, Patrick F. ; Dice, J. Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>acetyl coenzyme A</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Autophagy</topic><topic>biochemical pathways</topic><topic>Biological and medical sciences</topic><topic>Energy sources</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>food deprivation</topic><topic>free fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gluconeogenesis</topic><topic>Growth hormones</topic><topic>hormone receptors</topic><topic>Humans</topic><topic>Ketone bodies</topic><topic>Ketone Bodies - metabolism</topic><topic>Ketones</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>literature reviews</topic><topic>long term effects</topic><topic>Lysosomes - metabolism</topic><topic>Molecular Chaperones - physiology</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - chemistry</topic><topic>Musculoskeletal system</topic><topic>musculoskeletal system physiology</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein degradation</topic><topic>Proteins</topic><topic>proteolysis</topic><topic>Starvation</topic><topic>Starvation - metabolism</topic><topic>Tissues</topic><topic>tricarboxylic acid cycle</topic><topic>Triglycerides - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finn, Patrick F.</creatorcontrib><creatorcontrib>Dice, J. Fred</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Nursing & Allied Health Database</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finn, Patrick F.</au><au>Dice, J. Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic and lipolytic responses to starvation</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><addtitle>Nutrition</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>22</volume><issue>7</issue><spage>830</spage><epage>844</epage><pages>830-844</pages><issn>0899-9007</issn><eissn>1873-1244</eissn><coden>NUTRER</coden><abstract>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>16815497</pmid><doi>10.1016/j.nut.2006.04.008</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9007 |
ispartof | Nutrition (Burbank, Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844 |
issn | 0899-9007 1873-1244 |
language | eng |
recordid | cdi_proquest_miscellaneous_68596134 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | acetyl coenzyme A Acyl Coenzyme A - metabolism Autophagy biochemical pathways Biological and medical sciences Energy sources Enzyme Activation Enzymes Fatty acids Fatty Acids, Nonesterified - metabolism Feeding. Feeding behavior food deprivation free fatty acids Fundamental and applied biological sciences. Psychology gluconeogenesis Growth hormones hormone receptors Humans Ketone bodies Ketone Bodies - metabolism Ketones Lipids Lipolysis literature reviews long term effects Lysosomes - metabolism Molecular Chaperones - physiology Muscle Proteins - metabolism Muscle, Skeletal - chemistry Musculoskeletal system musculoskeletal system physiology Peptide Hydrolases - metabolism Proteasome Endopeptidase Complex - metabolism Protein degradation Proteins proteolysis Starvation Starvation - metabolism Tissues tricarboxylic acid cycle Triglycerides - metabolism Ubiquitin Ubiquitin - metabolism Vertebrates: anatomy and physiology, studies on body, several organs or systems |
title | Proteolytic and lipolytic responses to starvation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20and%20lipolytic%20responses%20to%20starvation&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Finn,%20Patrick%20F.&rft.date=2006-07-01&rft.volume=22&rft.issue=7&rft.spage=830&rft.epage=844&rft.pages=830-844&rft.issn=0899-9007&rft.eissn=1873-1244&rft.coden=NUTRER&rft_id=info:doi/10.1016/j.nut.2006.04.008&rft_dat=%3Cproquest_cross%3E68596134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139025520&rft_id=info:pmid/16815497&rft_els_id=S0899900706001766&rfr_iscdi=true |