Proteolytic and lipolytic responses to starvation

Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844
Hauptverfasser: Finn, Patrick F., Dice, J. Fred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 7
container_start_page 830
container_title Nutrition (Burbank, Los Angeles County, Calif.)
container_volume 22
creator Finn, Patrick F.
Dice, J. Fred
description Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.
doi_str_mv 10.1016/j.nut.2006.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68596134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899900706001766</els_id><sourcerecordid>68596134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</originalsourceid><addsrcrecordid>eNp90U2L1TAUBuAginNn9Ae40Quiu9Zz8tE2uJLBUWFAQWcd0vRUcultrkk6MP_eXFoYcOEqBJ7zcvKGsVcINQI2Hw71vOSaAzQ1yBqge8J22LWiQi7lU7aDTutKA7QX7DKlAwCgbvRzdoFNh0rqdsfwRwyZwvSQvdvbedhP_rTdIqVTmBOlfQ77lG28t9mH-QV7Ntop0cvtvGJ3N59_XX-tbr9_-Xb96bZyUutciRF6AaAsNVrQqEgAqVaSc-2AnHphVa9GaHtJHR-6kRA48W7gjUPZKS2u2Ps19xTDn4VSNkefHE2TnSksyTQFNShkgW__gYewxLnsZhCFBq4Uh6JwVS6GlCKN5hT90cYHg2DObZqDKW2ac5sGpCltlpnXW_LSH2l4nNjqK-DdBmxydhqjnZ1Pj67Vimt-DnqzutEGY3_HYu5-ckABWP5ofe3HVVCp9N5TNMl5mh0NPpLLZgj-P4v-BVHwmlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1139025520</pqid></control><display><type>article</type><title>Proteolytic and lipolytic responses to starvation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Finn, Patrick F. ; Dice, J. Fred</creator><creatorcontrib>Finn, Patrick F. ; Dice, J. Fred</creatorcontrib><description>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2006.04.008</identifier><identifier>PMID: 16815497</identifier><identifier>CODEN: NUTRER</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>acetyl coenzyme A ; Acyl Coenzyme A - metabolism ; Autophagy ; biochemical pathways ; Biological and medical sciences ; Energy sources ; Enzyme Activation ; Enzymes ; Fatty acids ; Fatty Acids, Nonesterified - metabolism ; Feeding. Feeding behavior ; food deprivation ; free fatty acids ; Fundamental and applied biological sciences. Psychology ; gluconeogenesis ; Growth hormones ; hormone receptors ; Humans ; Ketone bodies ; Ketone Bodies - metabolism ; Ketones ; Lipids ; Lipolysis ; literature reviews ; long term effects ; Lysosomes - metabolism ; Molecular Chaperones - physiology ; Muscle Proteins - metabolism ; Muscle, Skeletal - chemistry ; Musculoskeletal system ; musculoskeletal system physiology ; Peptide Hydrolases - metabolism ; Proteasome Endopeptidase Complex - metabolism ; Protein degradation ; Proteins ; proteolysis ; Starvation ; Starvation - metabolism ; Tissues ; tricarboxylic acid cycle ; Triglycerides - metabolism ; Ubiquitin ; Ubiquitin - metabolism ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844</ispartof><rights>2006 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</citedby><cites>FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1139025520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17952928$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16815497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Finn, Patrick F.</creatorcontrib><creatorcontrib>Dice, J. Fred</creatorcontrib><title>Proteolytic and lipolytic responses to starvation</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><addtitle>Nutrition</addtitle><description>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</description><subject>acetyl coenzyme A</subject><subject>Acyl Coenzyme A - metabolism</subject><subject>Autophagy</subject><subject>biochemical pathways</subject><subject>Biological and medical sciences</subject><subject>Energy sources</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids, Nonesterified - metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>food deprivation</subject><subject>free fatty acids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gluconeogenesis</subject><subject>Growth hormones</subject><subject>hormone receptors</subject><subject>Humans</subject><subject>Ketone bodies</subject><subject>Ketone Bodies - metabolism</subject><subject>Ketones</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>literature reviews</subject><subject>long term effects</subject><subject>Lysosomes - metabolism</subject><subject>Molecular Chaperones - physiology</subject><subject>Muscle Proteins - metabolism</subject><subject>Muscle, Skeletal - chemistry</subject><subject>Musculoskeletal system</subject><subject>musculoskeletal system physiology</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>Protein degradation</subject><subject>Proteins</subject><subject>proteolysis</subject><subject>Starvation</subject><subject>Starvation - metabolism</subject><subject>Tissues</subject><subject>tricarboxylic acid cycle</subject><subject>Triglycerides - metabolism</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90U2L1TAUBuAginNn9Ae40Quiu9Zz8tE2uJLBUWFAQWcd0vRUcultrkk6MP_eXFoYcOEqBJ7zcvKGsVcINQI2Hw71vOSaAzQ1yBqge8J22LWiQi7lU7aDTutKA7QX7DKlAwCgbvRzdoFNh0rqdsfwRwyZwvSQvdvbedhP_rTdIqVTmBOlfQ77lG28t9mH-QV7Ntop0cvtvGJ3N59_XX-tbr9_-Xb96bZyUutciRF6AaAsNVrQqEgAqVaSc-2AnHphVa9GaHtJHR-6kRA48W7gjUPZKS2u2Ps19xTDn4VSNkefHE2TnSksyTQFNShkgW__gYewxLnsZhCFBq4Uh6JwVS6GlCKN5hT90cYHg2DObZqDKW2ac5sGpCltlpnXW_LSH2l4nNjqK-DdBmxydhqjnZ1Pj67Vimt-DnqzutEGY3_HYu5-ckABWP5ofe3HVVCp9N5TNMl5mh0NPpLLZgj-P4v-BVHwmlk</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Finn, Patrick F.</creator><creator>Dice, J. Fred</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Proteolytic and lipolytic responses to starvation</title><author>Finn, Patrick F. ; Dice, J. Fred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3f0b3005ae693ef5e30e574ecc7d12eb3a5b5f07b4e82d8fe102e28d26c148593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>acetyl coenzyme A</topic><topic>Acyl Coenzyme A - metabolism</topic><topic>Autophagy</topic><topic>biochemical pathways</topic><topic>Biological and medical sciences</topic><topic>Energy sources</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids, Nonesterified - metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>food deprivation</topic><topic>free fatty acids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gluconeogenesis</topic><topic>Growth hormones</topic><topic>hormone receptors</topic><topic>Humans</topic><topic>Ketone bodies</topic><topic>Ketone Bodies - metabolism</topic><topic>Ketones</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>literature reviews</topic><topic>long term effects</topic><topic>Lysosomes - metabolism</topic><topic>Molecular Chaperones - physiology</topic><topic>Muscle Proteins - metabolism</topic><topic>Muscle, Skeletal - chemistry</topic><topic>Musculoskeletal system</topic><topic>musculoskeletal system physiology</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>Protein degradation</topic><topic>Proteins</topic><topic>proteolysis</topic><topic>Starvation</topic><topic>Starvation - metabolism</topic><topic>Tissues</topic><topic>tricarboxylic acid cycle</topic><topic>Triglycerides - metabolism</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finn, Patrick F.</creatorcontrib><creatorcontrib>Dice, J. Fred</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finn, Patrick F.</au><au>Dice, J. Fred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteolytic and lipolytic responses to starvation</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><addtitle>Nutrition</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>22</volume><issue>7</issue><spage>830</spage><epage>844</epage><pages>830-844</pages><issn>0899-9007</issn><eissn>1873-1244</eissn><coden>NUTRER</coden><abstract>Mammals survive starvation by activating proteolysis and lipolysis in many different tissues. These responses are triggered, at least in part, by changing hormonal and neural statuses during starvation. Pathways of proteolysis that are activated during starvation are surprisingly diverse, depending on tissue type and duration of starvation. The ubiquitin-proteasome system is primarily responsible for increased skeletal muscle protein breakdown during starvation. However, in most other tissues, lysosomal pathways of proteolysis are stimulated during fasting. Short-term starvation activates macroautophagy, whereas long-term starvation activates chaperone-mediated autophagy. Lipolysis also increases in response to starvation, and the breakdown of triacylglycerols provides free fatty acids to be used as an energy source by skeletal muscle and other tissues. In addition, glycerol released from triacylglycerols can be converted to glucose by hepatic gluconeogenesis. During long-term starvation, oxidation of free fatty acids by the liver leads to the production of ketone bodies that can be used for energy by skeletal muscle and brain. Tissues that cannot use ketone bodies for energy respond to these small molecules by activating chaperone-mediated autophagy. This is one form of interaction between proteolytic and lipolytic responses to starvation.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>16815497</pmid><doi>10.1016/j.nut.2006.04.008</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-9007
ispartof Nutrition (Burbank, Los Angeles County, Calif.), 2006-07, Vol.22 (7), p.830-844
issn 0899-9007
1873-1244
language eng
recordid cdi_proquest_miscellaneous_68596134
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects acetyl coenzyme A
Acyl Coenzyme A - metabolism
Autophagy
biochemical pathways
Biological and medical sciences
Energy sources
Enzyme Activation
Enzymes
Fatty acids
Fatty Acids, Nonesterified - metabolism
Feeding. Feeding behavior
food deprivation
free fatty acids
Fundamental and applied biological sciences. Psychology
gluconeogenesis
Growth hormones
hormone receptors
Humans
Ketone bodies
Ketone Bodies - metabolism
Ketones
Lipids
Lipolysis
literature reviews
long term effects
Lysosomes - metabolism
Molecular Chaperones - physiology
Muscle Proteins - metabolism
Muscle, Skeletal - chemistry
Musculoskeletal system
musculoskeletal system physiology
Peptide Hydrolases - metabolism
Proteasome Endopeptidase Complex - metabolism
Protein degradation
Proteins
proteolysis
Starvation
Starvation - metabolism
Tissues
tricarboxylic acid cycle
Triglycerides - metabolism
Ubiquitin
Ubiquitin - metabolism
Vertebrates: anatomy and physiology, studies on body, several organs or systems
title Proteolytic and lipolytic responses to starvation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteolytic%20and%20lipolytic%20responses%20to%20starvation&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Finn,%20Patrick%20F.&rft.date=2006-07-01&rft.volume=22&rft.issue=7&rft.spage=830&rft.epage=844&rft.pages=830-844&rft.issn=0899-9007&rft.eissn=1873-1244&rft.coden=NUTRER&rft_id=info:doi/10.1016/j.nut.2006.04.008&rft_dat=%3Cproquest_cross%3E68596134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1139025520&rft_id=info:pmid/16815497&rft_els_id=S0899900706001766&rfr_iscdi=true