Persistent breathers in long-ranged discrete nonlinear Schrödinger models

The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610
Hauptverfasser: Brunhuber, C, Mertens, F G, Gaididei, Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 056610
container_issue 5 Pt 2
container_start_page 056610
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 73
creator Brunhuber, C
Mertens, F G
Gaididei, Y
description The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.
doi_str_mv 10.1103/PhysRevE.73.056610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68588553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68588553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxS_IgfWaKqvFSJisfacuxJG5Q4xU6Q-mP8AD9GqhaxmhnNvVdXB6FLgqeEYHazXG_jC3zNp5JNMReC4CM0JpzjlDIpjnc7y1MmOR-hsxg_MGaUqewUjYhQmGGBx-hpCSFWsQPfJUUA062HO6l8Urd-lQbjV-ASV0UboIPEt76uPJiQvNp1-Pl21fAPSdM6qOM5OilNHeHiMCfo_W7-NntIF8_3j7PbRWoZJl3KBBUFzUorSEZVbh21PJdWGQApMluQnBaWUuoklZJYUM7iTOYAphTKCsom6HqfuwntZw-x083QD-raeGj7qIXiSnHOBiHdC21oYwxQ6k2oGhO2mmC9I6j_CGrJ9J7gYLo6pPdFA-7fckDGfgFocW-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68588553</pqid></control><display><type>article</type><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><source>American Physical Society Journals</source><creator>Brunhuber, C ; Mertens, F G ; Gaididei, Y</creator><creatorcontrib>Brunhuber, C ; Mertens, F G ; Gaididei, Y</creatorcontrib><description>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.73.056610</identifier><identifier>PMID: 16803060</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</citedby><cites>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16803060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunhuber, C</creatorcontrib><creatorcontrib>Mertens, F G</creatorcontrib><creatorcontrib>Gaididei, Y</creatorcontrib><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxS_IgfWaKqvFSJisfacuxJG5Q4xU6Q-mP8AD9GqhaxmhnNvVdXB6FLgqeEYHazXG_jC3zNp5JNMReC4CM0JpzjlDIpjnc7y1MmOR-hsxg_MGaUqewUjYhQmGGBx-hpCSFWsQPfJUUA062HO6l8Urd-lQbjV-ASV0UboIPEt76uPJiQvNp1-Pl21fAPSdM6qOM5OilNHeHiMCfo_W7-NntIF8_3j7PbRWoZJl3KBBUFzUorSEZVbh21PJdWGQApMluQnBaWUuoklZJYUM7iTOYAphTKCsom6HqfuwntZw-x083QD-raeGj7qIXiSnHOBiHdC21oYwxQ6k2oGhO2mmC9I6j_CGrJ9J7gYLo6pPdFA-7fckDGfgFocW-c</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Brunhuber, C</creator><creator>Mertens, F G</creator><creator>Gaididei, Y</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060501</creationdate><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><author>Brunhuber, C ; Mertens, F G ; Gaididei, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Brunhuber, C</creatorcontrib><creatorcontrib>Mertens, F G</creatorcontrib><creatorcontrib>Gaididei, Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunhuber, C</au><au>Mertens, F G</au><au>Gaididei, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>73</volume><issue>5 Pt 2</issue><spage>056610</spage><epage>056610</epage><pages>056610-056610</pages><artnum>056610</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</abstract><cop>United States</cop><pmid>16803060</pmid><doi>10.1103/PhysRevE.73.056610</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68588553
source American Physical Society Journals
title Persistent breathers in long-ranged discrete nonlinear Schrödinger models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20breathers%20in%20long-ranged%20discrete%20nonlinear%20Schr%C3%B6dinger%20models&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Brunhuber,%20C&rft.date=2006-05-01&rft.volume=73&rft.issue=5%20Pt%202&rft.spage=056610&rft.epage=056610&rft.pages=056610-056610&rft.artnum=056610&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.73.056610&rft_dat=%3Cproquest_cross%3E68588553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68588553&rft_id=info:pmid/16803060&rfr_iscdi=true