Persistent breathers in long-ranged discrete nonlinear Schrödinger models
The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse int...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056610 |
---|---|
container_issue | 5 Pt 2 |
container_start_page | 056610 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 73 |
creator | Brunhuber, C Mertens, F G Gaididei, Y |
description | The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase. |
doi_str_mv | 10.1103/PhysRevE.73.056610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68588553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68588553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxS_IgfWaKqvFSJisfacuxJG5Q4xU6Q-mP8AD9GqhaxmhnNvVdXB6FLgqeEYHazXG_jC3zNp5JNMReC4CM0JpzjlDIpjnc7y1MmOR-hsxg_MGaUqewUjYhQmGGBx-hpCSFWsQPfJUUA062HO6l8Urd-lQbjV-ASV0UboIPEt76uPJiQvNp1-Pl21fAPSdM6qOM5OilNHeHiMCfo_W7-NntIF8_3j7PbRWoZJl3KBBUFzUorSEZVbh21PJdWGQApMluQnBaWUuoklZJYUM7iTOYAphTKCsom6HqfuwntZw-x083QD-raeGj7qIXiSnHOBiHdC21oYwxQ6k2oGhO2mmC9I6j_CGrJ9J7gYLo6pPdFA-7fckDGfgFocW-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68588553</pqid></control><display><type>article</type><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><source>American Physical Society Journals</source><creator>Brunhuber, C ; Mertens, F G ; Gaididei, Y</creator><creatorcontrib>Brunhuber, C ; Mertens, F G ; Gaididei, Y</creatorcontrib><description>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.73.056610</identifier><identifier>PMID: 16803060</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</citedby><cites>FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16803060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunhuber, C</creatorcontrib><creatorcontrib>Mertens, F G</creatorcontrib><creatorcontrib>Gaididei, Y</creatorcontrib><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxS_IgfWaKqvFSJisfacuxJG5Q4xU6Q-mP8AD9GqhaxmhnNvVdXB6FLgqeEYHazXG_jC3zNp5JNMReC4CM0JpzjlDIpjnc7y1MmOR-hsxg_MGaUqewUjYhQmGGBx-hpCSFWsQPfJUUA062HO6l8Urd-lQbjV-ASV0UboIPEt76uPJiQvNp1-Pl21fAPSdM6qOM5OilNHeHiMCfo_W7-NntIF8_3j7PbRWoZJl3KBBUFzUorSEZVbh21PJdWGQApMluQnBaWUuoklZJYUM7iTOYAphTKCsom6HqfuwntZw-x083QD-raeGj7qIXiSnHOBiHdC21oYwxQ6k2oGhO2mmC9I6j_CGrJ9J7gYLo6pPdFA-7fckDGfgFocW-c</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Brunhuber, C</creator><creator>Mertens, F G</creator><creator>Gaididei, Y</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060501</creationdate><title>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</title><author>Brunhuber, C ; Mertens, F G ; Gaididei, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-3626b24fc614289cd2c597c8aee764cb192bc222d72771ce8dc0479eeaf68c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Brunhuber, C</creatorcontrib><creatorcontrib>Mertens, F G</creatorcontrib><creatorcontrib>Gaididei, Y</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunhuber, C</au><au>Mertens, F G</au><au>Gaididei, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Persistent breathers in long-ranged discrete nonlinear Schrödinger models</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>73</volume><issue>5 Pt 2</issue><spage>056610</spage><epage>056610</epage><pages>056610-056610</pages><artnum>056610</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The DNLS model including Kac-Baker long-range interactions and nonlinear damping exhibits prominent effects in computer simulations. The combination of long-range forces and damping yields a periodic pattern of stationary breathers from an originally uniformly distributed background. The inverse interaction radius determines the periodicity which can be understood in the quasicontinuum approximation of the system. For the undamped system, we investigate the impact of the long-range interactions on the transition to the persistent-breather phase, which only depends on the energy and the norm of the DNLS. Using Monte Carlo techniques, we can monitor the localization strength as a function of the the long-range radius and the system temperature, which is formally negative in the persistent-breather phase.</abstract><cop>United States</cop><pmid>16803060</pmid><doi>10.1103/PhysRevE.73.056610</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-05, Vol.73 (5 Pt 2), p.056610-056610, Article 056610 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_68588553 |
source | American Physical Society Journals |
title | Persistent breathers in long-ranged discrete nonlinear Schrödinger models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Persistent%20breathers%20in%20long-ranged%20discrete%20nonlinear%20Schr%C3%B6dinger%20models&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Brunhuber,%20C&rft.date=2006-05-01&rft.volume=73&rft.issue=5%20Pt%202&rft.spage=056610&rft.epage=056610&rft.pages=056610-056610&rft.artnum=056610&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.73.056610&rft_dat=%3Cproquest_cross%3E68588553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68588553&rft_id=info:pmid/16803060&rfr_iscdi=true |