Identification of biochemical networks by S-tree based genetic programming

Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2006-07, Vol.22 (13), p.1631-1640
Hauptverfasser: Cho, Dong-Yeon, Cho, Kwang-Hyun, Zhang, Byoung-Tak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1640
container_issue 13
container_start_page 1631
container_title Bioinformatics
container_volume 22
creator Cho, Dong-Yeon
Cho, Kwang-Hyun
Zhang, Byoung-Tak
description Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are
doi_str_mv 10.1093/bioinformatics/btl122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68575863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069166371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoMotlZ_gjIIejc23x-XUj_aZUGhvRBvQpI5WdPOTNpkFu2_N8suFr3xKiHnOc9J8iL0kuB3BBt26lNOc8xlcksK9dQvI6H0ETomXOKeYmEetz2TqucasyP0rNZrjAXhnD9FR0QKLbCUx2h1McC8pJhC8-S5y7Fr5vADpnYydjMsP3O5qZ2_7y77pQB03lUYug20Ugrdbcmb4qYpzZvn6El0Y4UXh_UEXX36eHV23q-_fL44e7_uA2ds6YGBIXoQGrwTXGpO1WDAMaOVEoK2Co_MuwieEwc8GhUUlT5wDIQaz07Q2722jb7bQl3slGqAcXQz5G21UgsltGT_BYlRinPMG_j6H_A6b8vc3tAYLRXjdGcTeyiUXGuBaG9Lmly5twTbXSL270TsPpHW9-og3_oJhoeuQwQNeHMAXG1fHoubQ6oPnDKSYr0T9Xsu1QV-_am7cmPbFZWw59--20us6OrDam2_st8I7aiS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198673423</pqid></control><display><type>article</type><title>Identification of biochemical networks by S-tree based genetic programming</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</creator><creatorcontrib>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</creatorcontrib><description>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are &lt;5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl122</identifier><identifier>PMID: 16585066</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biochemistry - methods ; Biological and medical sciences ; Computational Biology - methods ; Computer Simulation ; DNA Repair ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; General aspects ; Genes, Bacterial ; Genes, Fungal ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Genetic ; Models, Statistical ; Systems Biology</subject><ispartof>Bioinformatics, 2006-07, Vol.22 (13), p.1631-1640</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jul 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</citedby><cites>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17962082$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16585066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Dong-Yeon</creatorcontrib><creatorcontrib>Cho, Kwang-Hyun</creatorcontrib><creatorcontrib>Zhang, Byoung-Tak</creatorcontrib><title>Identification of biochemical networks by S-tree based genetic programming</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are &lt;5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</description><subject>Algorithms</subject><subject>Biochemistry - methods</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>DNA Repair</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>General aspects</subject><subject>Genes, Bacterial</subject><subject>Genes, Fungal</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Systems Biology</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoMotlZ_gjIIejc23x-XUj_aZUGhvRBvQpI5WdPOTNpkFu2_N8suFr3xKiHnOc9J8iL0kuB3BBt26lNOc8xlcksK9dQvI6H0ETomXOKeYmEetz2TqucasyP0rNZrjAXhnD9FR0QKLbCUx2h1McC8pJhC8-S5y7Fr5vADpnYydjMsP3O5qZ2_7y77pQB03lUYug20Ugrdbcmb4qYpzZvn6El0Y4UXh_UEXX36eHV23q-_fL44e7_uA2ds6YGBIXoQGrwTXGpO1WDAMaOVEoK2Co_MuwieEwc8GhUUlT5wDIQaz07Q2722jb7bQl3slGqAcXQz5G21UgsltGT_BYlRinPMG_j6H_A6b8vc3tAYLRXjdGcTeyiUXGuBaG9Lmly5twTbXSL270TsPpHW9-og3_oJhoeuQwQNeHMAXG1fHoubQ6oPnDKSYr0T9Xsu1QV-_am7cmPbFZWw59--20us6OrDam2_st8I7aiS</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Cho, Dong-Yeon</creator><creator>Cho, Kwang-Hyun</creator><creator>Zhang, Byoung-Tak</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>C1K</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Identification of biochemical networks by S-tree based genetic programming</title><author>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biochemistry - methods</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>DNA Repair</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>General aspects</topic><topic>Genes, Bacterial</topic><topic>Genes, Fungal</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Dong-Yeon</creatorcontrib><creatorcontrib>Cho, Kwang-Hyun</creatorcontrib><creatorcontrib>Zhang, Byoung-Tak</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Dong-Yeon</au><au>Cho, Kwang-Hyun</au><au>Zhang, Byoung-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of biochemical networks by S-tree based genetic programming</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>22</volume><issue>13</issue><spage>1631</spage><epage>1640</epage><pages>1631-1640</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are &lt;5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16585066</pmid><doi>10.1093/bioinformatics/btl122</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2006-07, Vol.22 (13), p.1631-1640
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_68575863
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Biochemistry - methods
Biological and medical sciences
Computational Biology - methods
Computer Simulation
DNA Repair
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
Gene Expression Profiling
General aspects
Genes, Bacterial
Genes, Fungal
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Genetic
Models, Statistical
Systems Biology
title Identification of biochemical networks by S-tree based genetic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20biochemical%20networks%20by%20S-tree%20based%20genetic%20programming&rft.jtitle=Bioinformatics&rft.au=Cho,%20Dong-Yeon&rft.date=2006-07-01&rft.volume=22&rft.issue=13&rft.spage=1631&rft.epage=1640&rft.pages=1631-1640&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl122&rft_dat=%3Cproquest_cross%3E1069166371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198673423&rft_id=info:pmid/16585066&rfr_iscdi=true