Identification of biochemical networks by S-tree based genetic programming
Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, howe...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2006-07, Vol.22 (13), p.1631-1640 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1640 |
---|---|
container_issue | 13 |
container_start_page | 1631 |
container_title | Bioinformatics |
container_volume | 22 |
creator | Cho, Dong-Yeon Cho, Kwang-Hyun Zhang, Byoung-Tak |
description | Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are |
doi_str_mv | 10.1093/bioinformatics/btl122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68575863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069166371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoMotlZ_gjIIejc23x-XUj_aZUGhvRBvQpI5WdPOTNpkFu2_N8suFr3xKiHnOc9J8iL0kuB3BBt26lNOc8xlcksK9dQvI6H0ETomXOKeYmEetz2TqucasyP0rNZrjAXhnD9FR0QKLbCUx2h1McC8pJhC8-S5y7Fr5vADpnYydjMsP3O5qZ2_7y77pQB03lUYug20Ugrdbcmb4qYpzZvn6El0Y4UXh_UEXX36eHV23q-_fL44e7_uA2ds6YGBIXoQGrwTXGpO1WDAMaOVEoK2Co_MuwieEwc8GhUUlT5wDIQaz07Q2722jb7bQl3slGqAcXQz5G21UgsltGT_BYlRinPMG_j6H_A6b8vc3tAYLRXjdGcTeyiUXGuBaG9Lmly5twTbXSL270TsPpHW9-og3_oJhoeuQwQNeHMAXG1fHoubQ6oPnDKSYr0T9Xsu1QV-_am7cmPbFZWw59--20us6OrDam2_st8I7aiS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198673423</pqid></control><display><type>article</type><title>Identification of biochemical networks by S-tree based genetic programming</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</creator><creatorcontrib>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</creatorcontrib><description>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are <5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl122</identifier><identifier>PMID: 16585066</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biochemistry - methods ; Biological and medical sciences ; Computational Biology - methods ; Computer Simulation ; DNA Repair ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; General aspects ; Genes, Bacterial ; Genes, Fungal ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Models, Genetic ; Models, Statistical ; Systems Biology</subject><ispartof>Bioinformatics, 2006-07, Vol.22 (13), p.1631-1640</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jul 1, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</citedby><cites>FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17962082$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16585066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Dong-Yeon</creatorcontrib><creatorcontrib>Cho, Kwang-Hyun</creatorcontrib><creatorcontrib>Zhang, Byoung-Tak</creatorcontrib><title>Identification of biochemical networks by S-tree based genetic programming</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are <5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</description><subject>Algorithms</subject><subject>Biochemistry - methods</subject><subject>Biological and medical sciences</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>DNA Repair</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>General aspects</subject><subject>Genes, Bacterial</subject><subject>Genes, Fungal</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Models, Genetic</subject><subject>Models, Statistical</subject><subject>Systems Biology</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoMotlZ_gjIIejc23x-XUj_aZUGhvRBvQpI5WdPOTNpkFu2_N8suFr3xKiHnOc9J8iL0kuB3BBt26lNOc8xlcksK9dQvI6H0ETomXOKeYmEetz2TqucasyP0rNZrjAXhnD9FR0QKLbCUx2h1McC8pJhC8-S5y7Fr5vADpnYydjMsP3O5qZ2_7y77pQB03lUYug20Ugrdbcmb4qYpzZvn6El0Y4UXh_UEXX36eHV23q-_fL44e7_uA2ds6YGBIXoQGrwTXGpO1WDAMaOVEoK2Co_MuwieEwc8GhUUlT5wDIQaz07Q2722jb7bQl3slGqAcXQz5G21UgsltGT_BYlRinPMG_j6H_A6b8vc3tAYLRXjdGcTeyiUXGuBaG9Lmly5twTbXSL270TsPpHW9-og3_oJhoeuQwQNeHMAXG1fHoubQ6oPnDKSYr0T9Xsu1QV-_am7cmPbFZWw59--20us6OrDam2_st8I7aiS</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Cho, Dong-Yeon</creator><creator>Cho, Kwang-Hyun</creator><creator>Zhang, Byoung-Tak</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7QL</scope><scope>C1K</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060701</creationdate><title>Identification of biochemical networks by S-tree based genetic programming</title><author>Cho, Dong-Yeon ; Cho, Kwang-Hyun ; Zhang, Byoung-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-e3e918d58eba5468427d9ea398775528d54f3bafeb41ae4f97c726bc40e129b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biochemistry - methods</topic><topic>Biological and medical sciences</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>DNA Repair</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>General aspects</topic><topic>Genes, Bacterial</topic><topic>Genes, Fungal</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Models, Genetic</topic><topic>Models, Statistical</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Dong-Yeon</creatorcontrib><creatorcontrib>Cho, Kwang-Hyun</creatorcontrib><creatorcontrib>Zhang, Byoung-Tak</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Dong-Yeon</au><au>Cho, Kwang-Hyun</au><au>Zhang, Byoung-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of biochemical networks by S-tree based genetic programming</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-07-01</date><risdate>2006</risdate><volume>22</volume><issue>13</issue><spage>1631</spage><epage>1640</epage><pages>1631-1640</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Most previous approaches to model biochemical networks have focused either on the characterization of a network structure with a number of components or on the estimation of kinetic parameters of a network with a relatively small number of components. For system-level understanding, however, we should examine both the interactions among the components and the dynamic behaviors of the components. A key obstacle to this simultaneous identification of the structure and parameters is the lack of data compared with the relatively large number of parameters to be estimated. Hence, there are many plausible networks for the given data, but most of them are not likely to exist in the real system. Results: We propose a new representation named S-trees for both the structural and dynamical modeling of a biochemical network within a unified scheme. We further present S-tree based genetic programming to identify the structure of a biochemical network and to estimate the corresponding parameter values at the same time. While other evolutionary algorithms require additional techniques for sparse structure identification, our approach can automatically assemble the sparse primitives of a biochemical network in an efficient way. We evaluate our algorithm on the dynamic profiles of an artificial genetic network. In 20 trials for four settings, we obtain the true structure and their relative squared errors are <5% regardless of releasing constraints about structural sparseness. In addition, we confirm that the proposed algorithm is robust within ±10% noise ratio. Furthermore, the proposed approach ensures a reasonable estimate of a real yeast fermentation pathway. The comparatively less important connections with non-zero parameters can be detected even though their orders are below 10−2. To demonstrate the usefulness of the proposed algorithm for real experimental biological data, we provide an additional example on the transcriptional network of SOS response to DNA damage in Escherichia coli. We confirm that the proposed algorithm can successfully identify the true structure except only one relation. Availability: The executable program and data are available from the authors upon request. Contact:ckh-sb@snu.ac.kr or btzhang@snu.ac.kr</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16585066</pmid><doi>10.1093/bioinformatics/btl122</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2006-07, Vol.22 (13), p.1631-1640 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_68575863 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Biochemistry - methods Biological and medical sciences Computational Biology - methods Computer Simulation DNA Repair Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fermentation Fundamental and applied biological sciences. Psychology Gene Expression Profiling General aspects Genes, Bacterial Genes, Fungal Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Models, Genetic Models, Statistical Systems Biology |
title | Identification of biochemical networks by S-tree based genetic programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20biochemical%20networks%20by%20S-tree%20based%20genetic%20programming&rft.jtitle=Bioinformatics&rft.au=Cho,%20Dong-Yeon&rft.date=2006-07-01&rft.volume=22&rft.issue=13&rft.spage=1631&rft.epage=1640&rft.pages=1631-1640&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl122&rft_dat=%3Cproquest_cross%3E1069166371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198673423&rft_id=info:pmid/16585066&rfr_iscdi=true |