The neural mechanism associated with the processing of onomatopoeic sounds
This event-related fMRI study was conducted to examine the blood-oxygen-level-dependent responses to the processing of auditory onomatopoeic sounds. We used a sound categorization task in which the participants heard four types of stimuli: onomatopoeic sounds, nouns (verbal), animal (nonverbal) soun...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2006-07, Vol.31 (4), p.1762-1770 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This event-related fMRI study was conducted to examine the blood-oxygen-level-dependent responses to the processing of auditory onomatopoeic sounds. We used a sound categorization task in which the participants heard four types of stimuli: onomatopoeic sounds, nouns (verbal), animal (nonverbal) sounds, and pure tone/noise (control). By discriminating between the categories of target sounds (birds/nonbirds), the nouns resulted in activations in the left anterior superior temporal gyrus (STG), whereas the animal sounds resulted in activations in the bilateral superior temporal sulcus (STS) and the left inferior frontal gyrus (IFG). In contrast, the onomatopoeias activated extensive brain regions, including the left anterior STG, the region from the bilateral STS to the middle temporal gyrus, and the bilateral IFG. The onomatopoeic sounds showed greater activation in the right middle STS than did the nouns and environmental sounds. These results indicate that onomatopoeic sounds are processed by extensive brain regions involved in the processing of both verbal and nonverbal sounds. Thus, we can posit that onomatopoeic sounds can serve as a bridge between nouns and animal sounds. This is the first evidence to demonstrate the way in which onomatopoeic sounds are processed in the human brain. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2006.02.019 |