Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio

The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2005-09, Vol.24 (18), p.2837-2855
1. Verfasser: Zaslavsky, Boris G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2855
container_issue 18
container_start_page 2837
container_title Statistics in medicine
container_volume 24
creator Zaslavsky, Boris G.
description The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.2152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68563067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68563067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</originalsourceid><addsrcrecordid>eNp10d1qFDEUB_Agit1WwSeQ4IX0Zmo-JpOZy1Jst1A_wEq9C8nkTDd1JpkmM637Kj6tWXdQELxJSPLj_E84CL2i5IQSwt4lN5wwKtgTtKKkkQVhon6KVoRJWVSSigN0mNIdITQb-Rwd0IrykpZ8hX6epgQpOX-L4X52D7oH3wIOEfvgC-c7iC5EN22x8zi1EcDv7ARpSvjRTRs8ahfBYu1tJhZGyIufsHE-DE73OJ_H4Hzm0yaG-XaD2-A7Z3_n5HuIOTThLkdOm5xsbcJRTy68QM-6_AIvl_0IfT1_f322Lq4-XVyenV4VbUlrVlhNuCVWtLTupDStEaTphAZjZQ2Ga21MYxrJOBE1kaUgAEa3taS6aURlCD9Cb_d1xxju5_wxNbjUQt9rD2FOqqpFxUklM3zzD7wLc_S5N8UYpyVteJ3R8R61MaQUoVNjdIOOW0WJ2g1L5WGp3bAyfb3Um80A9i9cppNBsQeProftfwupL5cfloKLd2mCH3-8jt9Vbl8KdfPxQn1u1t_W16xSN_wXSHexCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223141938</pqid></control><display><type>article</type><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zaslavsky, Boris G.</creator><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><description>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.2152</identifier><identifier>PMID: 16134143</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Analysis of Variance ; Biometry ; Comparative analysis ; Confidence Intervals ; Diagnostic Techniques and Procedures - statistics &amp; numerical data ; Diagnostic tests ; generalized estimation equations ; Humans ; logistic regression ; Odds Ratio ; repeated measures ; SAS PROC GENMOD ; Software ; Statistical analysis</subject><ispartof>Statistics in medicine, 2005-09, Vol.24 (18), p.2837-2855</ispartof><rights>This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley &amp; Sons, Ltd.</rights><rights>Copyright 2005 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 30, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</citedby><cites>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.2152$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.2152$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16134143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley &amp; Sons, Ltd.</description><subject>Analysis of Variance</subject><subject>Biometry</subject><subject>Comparative analysis</subject><subject>Confidence Intervals</subject><subject>Diagnostic Techniques and Procedures - statistics &amp; numerical data</subject><subject>Diagnostic tests</subject><subject>generalized estimation equations</subject><subject>Humans</subject><subject>logistic regression</subject><subject>Odds Ratio</subject><subject>repeated measures</subject><subject>SAS PROC GENMOD</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10d1qFDEUB_Agit1WwSeQ4IX0Zmo-JpOZy1Jst1A_wEq9C8nkTDd1JpkmM637Kj6tWXdQELxJSPLj_E84CL2i5IQSwt4lN5wwKtgTtKKkkQVhon6KVoRJWVSSigN0mNIdITQb-Rwd0IrykpZ8hX6epgQpOX-L4X52D7oH3wIOEfvgC-c7iC5EN22x8zi1EcDv7ARpSvjRTRs8ahfBYu1tJhZGyIufsHE-DE73OJ_H4Hzm0yaG-XaD2-A7Z3_n5HuIOTThLkdOm5xsbcJRTy68QM-6_AIvl_0IfT1_f322Lq4-XVyenV4VbUlrVlhNuCVWtLTupDStEaTphAZjZQ2Ga21MYxrJOBE1kaUgAEa3taS6aURlCD9Cb_d1xxju5_wxNbjUQt9rD2FOqqpFxUklM3zzD7wLc_S5N8UYpyVteJ3R8R61MaQUoVNjdIOOW0WJ2g1L5WGp3bAyfb3Um80A9i9cppNBsQeProftfwupL5cfloKLd2mCH3-8jt9Vbl8KdfPxQn1u1t_W16xSN_wXSHexCA</recordid><startdate>20050930</startdate><enddate>20050930</enddate><creator>Zaslavsky, Boris G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20050930</creationdate><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><author>Zaslavsky, Boris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of Variance</topic><topic>Biometry</topic><topic>Comparative analysis</topic><topic>Confidence Intervals</topic><topic>Diagnostic Techniques and Procedures - statistics &amp; numerical data</topic><topic>Diagnostic tests</topic><topic>generalized estimation equations</topic><topic>Humans</topic><topic>logistic regression</topic><topic>Odds Ratio</topic><topic>repeated measures</topic><topic>SAS PROC GENMOD</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaslavsky, Boris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2005-09-30</date><risdate>2005</risdate><volume>24</volume><issue>18</issue><spage>2837</spage><epage>2855</epage><pages>2837-2855</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16134143</pmid><doi>10.1002/sim.2152</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2005-09, Vol.24 (18), p.2837-2855
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_68563067
source MEDLINE; Wiley Online Library All Journals
subjects Analysis of Variance
Biometry
Comparative analysis
Confidence Intervals
Diagnostic Techniques and Procedures - statistics & numerical data
Diagnostic tests
generalized estimation equations
Humans
logistic regression
Odds Ratio
repeated measures
SAS PROC GENMOD
Software
Statistical analysis
title Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20equivalence%20or%20non-inferiority%20in%20screening%20tests%20with%20paired%20and%20independent%20binomial%20endpoints%20through%20confidence%20intervals%20for%20the%20odds%20ratio&rft.jtitle=Statistics%20in%20medicine&rft.au=Zaslavsky,%20Boris%20G.&rft.date=2005-09-30&rft.volume=24&rft.issue=18&rft.spage=2837&rft.epage=2855&rft.pages=2837-2855&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.2152&rft_dat=%3Cproquest_cross%3E68563067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223141938&rft_id=info:pmid/16134143&rfr_iscdi=true