Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio
The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs f...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2005-09, Vol.24 (18), p.2837-2855 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2855 |
---|---|
container_issue | 18 |
container_start_page | 2837 |
container_title | Statistics in medicine |
container_volume | 24 |
creator | Zaslavsky, Boris G. |
description | The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.2152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68563067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68563067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</originalsourceid><addsrcrecordid>eNp10d1qFDEUB_Agit1WwSeQ4IX0Zmo-JpOZy1Jst1A_wEq9C8nkTDd1JpkmM637Kj6tWXdQELxJSPLj_E84CL2i5IQSwt4lN5wwKtgTtKKkkQVhon6KVoRJWVSSigN0mNIdITQb-Rwd0IrykpZ8hX6epgQpOX-L4X52D7oH3wIOEfvgC-c7iC5EN22x8zi1EcDv7ARpSvjRTRs8ahfBYu1tJhZGyIufsHE-DE73OJ_H4Hzm0yaG-XaD2-A7Z3_n5HuIOTThLkdOm5xsbcJRTy68QM-6_AIvl_0IfT1_f322Lq4-XVyenV4VbUlrVlhNuCVWtLTupDStEaTphAZjZQ2Ga21MYxrJOBE1kaUgAEa3taS6aURlCD9Cb_d1xxju5_wxNbjUQt9rD2FOqqpFxUklM3zzD7wLc_S5N8UYpyVteJ3R8R61MaQUoVNjdIOOW0WJ2g1L5WGp3bAyfb3Um80A9i9cppNBsQeProftfwupL5cfloKLd2mCH3-8jt9Vbl8KdfPxQn1u1t_W16xSN_wXSHexCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223141938</pqid></control><display><type>article</type><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Zaslavsky, Boris G.</creator><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><description>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.2152</identifier><identifier>PMID: 16134143</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Analysis of Variance ; Biometry ; Comparative analysis ; Confidence Intervals ; Diagnostic Techniques and Procedures - statistics & numerical data ; Diagnostic tests ; generalized estimation equations ; Humans ; logistic regression ; Odds Ratio ; repeated measures ; SAS PROC GENMOD ; Software ; Statistical analysis</subject><ispartof>Statistics in medicine, 2005-09, Vol.24 (18), p.2837-2855</ispartof><rights>This article is a U.S. Government work and is in the public domain in the U.S.A. Published in 2005 by John Wiley & Sons, Ltd.</rights><rights>Copyright 2005 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 30, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</citedby><cites>FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.2152$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.2152$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16134143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley & Sons, Ltd.</description><subject>Analysis of Variance</subject><subject>Biometry</subject><subject>Comparative analysis</subject><subject>Confidence Intervals</subject><subject>Diagnostic Techniques and Procedures - statistics & numerical data</subject><subject>Diagnostic tests</subject><subject>generalized estimation equations</subject><subject>Humans</subject><subject>logistic regression</subject><subject>Odds Ratio</subject><subject>repeated measures</subject><subject>SAS PROC GENMOD</subject><subject>Software</subject><subject>Statistical analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10d1qFDEUB_Agit1WwSeQ4IX0Zmo-JpOZy1Jst1A_wEq9C8nkTDd1JpkmM637Kj6tWXdQELxJSPLj_E84CL2i5IQSwt4lN5wwKtgTtKKkkQVhon6KVoRJWVSSigN0mNIdITQb-Rwd0IrykpZ8hX6epgQpOX-L4X52D7oH3wIOEfvgC-c7iC5EN22x8zi1EcDv7ARpSvjRTRs8ahfBYu1tJhZGyIufsHE-DE73OJ_H4Hzm0yaG-XaD2-A7Z3_n5HuIOTThLkdOm5xsbcJRTy68QM-6_AIvl_0IfT1_f322Lq4-XVyenV4VbUlrVlhNuCVWtLTupDStEaTphAZjZQ2Ga21MYxrJOBE1kaUgAEa3taS6aURlCD9Cb_d1xxju5_wxNbjUQt9rD2FOqqpFxUklM3zzD7wLc_S5N8UYpyVteJ3R8R61MaQUoVNjdIOOW0WJ2g1L5WGp3bAyfb3Um80A9i9cppNBsQeProftfwupL5cfloKLd2mCH3-8jt9Vbl8KdfPxQn1u1t_W16xSN_wXSHexCA</recordid><startdate>20050930</startdate><enddate>20050930</enddate><creator>Zaslavsky, Boris G.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20050930</creationdate><title>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</title><author>Zaslavsky, Boris G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4182-da03d0d5c18f77bcb509f5aebd78eb3aabb9b972305807450eebac871a9956b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analysis of Variance</topic><topic>Biometry</topic><topic>Comparative analysis</topic><topic>Confidence Intervals</topic><topic>Diagnostic Techniques and Procedures - statistics & numerical data</topic><topic>Diagnostic tests</topic><topic>generalized estimation equations</topic><topic>Humans</topic><topic>logistic regression</topic><topic>Odds Ratio</topic><topic>repeated measures</topic><topic>SAS PROC GENMOD</topic><topic>Software</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaslavsky, Boris G.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaslavsky, Boris G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2005-09-30</date><risdate>2005</risdate><volume>24</volume><issue>18</issue><spage>2837</spage><epage>2855</epage><pages>2837-2855</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>The confidence interval (CI) on the population average (PA) odds ratio (OR) is a useful measure of agreement among different diagnostic methods when no gold standard is available. It can be calculated by the repeated measures logistic regression procedure (GENMOD, SAS). We compare the width of CIs from paired and independent samples with an identical number of measurements and an identical probability of positive response among them. For two and three diagnostic methods with binomial endpoints, the best performing sampling strategy is analytically described. The asymptotic formulae of the ratio of the CI widths for paired and independent samples are provided. We numerically study the dependence of the width of the CIs on the number of positive concordant outcomes. The width of CIs from independent samples is an increasing function of the sample size with a saturation asymptote and rather weak dependence on the argument. The width of CIs from paired samples is a decreasing function of the sample size with a saturation asymptote and significant dependence on the argument when the sample size is small. If curves for paired and independent samples intersect, a critical sample size exists. At this point, a small change in the sample size can reverse the choice of the best performing sampling policy. We numerically validated the robustness of the critical point to variations of the conditional OR. Published in 2005 by John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16134143</pmid><doi>10.1002/sim.2152</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2005-09, Vol.24 (18), p.2837-2855 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_68563067 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Analysis of Variance Biometry Comparative analysis Confidence Intervals Diagnostic Techniques and Procedures - statistics & numerical data Diagnostic tests generalized estimation equations Humans logistic regression Odds Ratio repeated measures SAS PROC GENMOD Software Statistical analysis |
title | Assessing equivalence or non-inferiority in screening tests with paired and independent binomial endpoints through confidence intervals for the odds ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20equivalence%20or%20non-inferiority%20in%20screening%20tests%20with%20paired%20and%20independent%20binomial%20endpoints%20through%20confidence%20intervals%20for%20the%20odds%20ratio&rft.jtitle=Statistics%20in%20medicine&rft.au=Zaslavsky,%20Boris%20G.&rft.date=2005-09-30&rft.volume=24&rft.issue=18&rft.spage=2837&rft.epage=2855&rft.pages=2837-2855&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.2152&rft_dat=%3Cproquest_cross%3E68563067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223141938&rft_id=info:pmid/16134143&rfr_iscdi=true |