Smooth Tests for the Zero‐Inflated Poisson Distribution

In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2005-09, Vol.61 (3), p.808-815
Hauptverfasser: Thas, Olivier, Rayner, J. C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue 3
container_start_page 808
container_title Biometrics
container_volume 61
creator Thas, Olivier
Rayner, J. C. W.
description In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.
doi_str_mv 10.1111/j.1541-0420.2005.00351.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68545901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695610</jstor_id><sourcerecordid>3695610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhDRBELNglXP_GWbCAAu1UU1qprQaxsZzEpkkzcbETMd31EfqMPEk9ZDRIrPDG1zrfuffqGKEEQ4bjeddmmDOcAiOQEQCeAVCOs_UjNNsJj9EMAERKGf62h56F0MZnwYE8RXtYYMqBkhkqzlfODVfJhQlDSKzzyXBlku_Gu9939_PednowdXLmmhBcn3xqwuCbchwa1z9HT6zugnmxvffR5ZfPFwdH6eL0cH7wYZFWLM9xmudWAtRFGUdWNidEc1bF2poauGG15aClLJkASXRpiKhtQUjBQHIprCzoPno79b3x7ucY11SrJlSm63Rv3BiUkJzxAnAE3_wDtm70fdxNEUwlFZjICMkJqrwLwRurbnyz0v5WYVCbbFWrNhGqTYRqk636k61aR-urbf-xXJn6r3EbZgTeT8CvpjO3_91YfZyfnsQq-l9O_jYMzu_8VBRcYIhyOsnxE8x6J2t_rUROc66WXw_V8ZKdLI7OhFpG_vXEW-2U_uGboC7PCWAOgFkuaUEfAEJbp-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836128</pqid></control><display><type>article</type><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Thas, Olivier ; Rayner, J. C. W.</creator><creatorcontrib>Thas, Olivier ; Rayner, J. C. W.</creatorcontrib><description>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00351.x</identifier><identifier>PMID: 16135032</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Animals ; Biometrics ; biometry ; Computer Simulation ; data collection ; Data Interpretation, Statistical ; Estimation methods ; Estimators ; Fetal Movement - physiology ; Generalized score test ; Hypothesis testing ; Mathematical independent variables ; Mathematical moments ; Maximum likelihood estimation ; Neyman smooth test ; Null hypothesis ; Orthonormal polynomials ; Parametric models ; Poisson Distribution ; Polynomials ; Regression Analysis ; Sheep - embryology ; Statistics</subject><ispartof>Biometrics, 2005-09, Vol.61 (3), p.808-815</ispartof><rights>Copyright 2005 The International Biometric Society</rights><rights>The International Biometric Society, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</citedby><cites>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695610$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695610$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16135032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thas, Olivier</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</description><subject>Animals</subject><subject>Biometrics</subject><subject>biometry</subject><subject>Computer Simulation</subject><subject>data collection</subject><subject>Data Interpretation, Statistical</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Fetal Movement - physiology</subject><subject>Generalized score test</subject><subject>Hypothesis testing</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Maximum likelihood estimation</subject><subject>Neyman smooth test</subject><subject>Null hypothesis</subject><subject>Orthonormal polynomials</subject><subject>Parametric models</subject><subject>Poisson Distribution</subject><subject>Polynomials</subject><subject>Regression Analysis</subject><subject>Sheep - embryology</subject><subject>Statistics</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhDRBELNglXP_GWbCAAu1UU1qprQaxsZzEpkkzcbETMd31EfqMPEk9ZDRIrPDG1zrfuffqGKEEQ4bjeddmmDOcAiOQEQCeAVCOs_UjNNsJj9EMAERKGf62h56F0MZnwYE8RXtYYMqBkhkqzlfODVfJhQlDSKzzyXBlku_Gu9939_PednowdXLmmhBcn3xqwuCbchwa1z9HT6zugnmxvffR5ZfPFwdH6eL0cH7wYZFWLM9xmudWAtRFGUdWNidEc1bF2poauGG15aClLJkASXRpiKhtQUjBQHIprCzoPno79b3x7ucY11SrJlSm63Rv3BiUkJzxAnAE3_wDtm70fdxNEUwlFZjICMkJqrwLwRurbnyz0v5WYVCbbFWrNhGqTYRqk636k61aR-urbf-xXJn6r3EbZgTeT8CvpjO3_91YfZyfnsQq-l9O_jYMzu_8VBRcYIhyOsnxE8x6J2t_rUROc66WXw_V8ZKdLI7OhFpG_vXEW-2U_uGboC7PCWAOgFkuaUEfAEJbp-0</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Thas, Olivier</creator><creator>Rayner, J. C. W.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200509</creationdate><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><author>Thas, Olivier ; Rayner, J. C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biometrics</topic><topic>biometry</topic><topic>Computer Simulation</topic><topic>data collection</topic><topic>Data Interpretation, Statistical</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Fetal Movement - physiology</topic><topic>Generalized score test</topic><topic>Hypothesis testing</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Maximum likelihood estimation</topic><topic>Neyman smooth test</topic><topic>Null hypothesis</topic><topic>Orthonormal polynomials</topic><topic>Parametric models</topic><topic>Poisson Distribution</topic><topic>Polynomials</topic><topic>Regression Analysis</topic><topic>Sheep - embryology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thas, Olivier</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thas, Olivier</au><au>Rayner, J. C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Tests for the Zero‐Inflated Poisson Distribution</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2005-09</date><risdate>2005</risdate><volume>61</volume><issue>3</issue><spage>808</spage><epage>815</epage><pages>808-815</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>16135032</pmid><doi>10.1111/j.1541-0420.2005.00351.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2005-09, Vol.61 (3), p.808-815
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_68545901
source MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Biometrics
biometry
Computer Simulation
data collection
Data Interpretation, Statistical
Estimation methods
Estimators
Fetal Movement - physiology
Generalized score test
Hypothesis testing
Mathematical independent variables
Mathematical moments
Maximum likelihood estimation
Neyman smooth test
Null hypothesis
Orthonormal polynomials
Parametric models
Poisson Distribution
Polynomials
Regression Analysis
Sheep - embryology
Statistics
title Smooth Tests for the Zero‐Inflated Poisson Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Tests%20for%20the%20Zero%E2%80%90Inflated%20Poisson%20Distribution&rft.jtitle=Biometrics&rft.au=Thas,%20Olivier&rft.date=2005-09&rft.volume=61&rft.issue=3&rft.spage=808&rft.epage=815&rft.pages=808-815&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00351.x&rft_dat=%3Cjstor_proqu%3E3695610%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836128&rft_id=info:pmid/16135032&rft_jstor_id=3695610&rfr_iscdi=true