Smooth Tests for the Zero‐Inflated Poisson Distribution
In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good mode...
Gespeichert in:
Veröffentlicht in: | Biometrics 2005-09, Vol.61 (3), p.808-815 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 3 |
container_start_page | 808 |
container_title | Biometrics |
container_volume | 61 |
creator | Thas, Olivier Rayner, J. C. W. |
description | In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution. |
doi_str_mv | 10.1111/j.1541-0420.2005.00351.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68545901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3695610</jstor_id><sourcerecordid>3695610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhDRBELNglXP_GWbCAAu1UU1qprQaxsZzEpkkzcbETMd31EfqMPEk9ZDRIrPDG1zrfuffqGKEEQ4bjeddmmDOcAiOQEQCeAVCOs_UjNNsJj9EMAERKGf62h56F0MZnwYE8RXtYYMqBkhkqzlfODVfJhQlDSKzzyXBlku_Gu9939_PednowdXLmmhBcn3xqwuCbchwa1z9HT6zugnmxvffR5ZfPFwdH6eL0cH7wYZFWLM9xmudWAtRFGUdWNidEc1bF2poauGG15aClLJkASXRpiKhtQUjBQHIprCzoPno79b3x7ucY11SrJlSm63Rv3BiUkJzxAnAE3_wDtm70fdxNEUwlFZjICMkJqrwLwRurbnyz0v5WYVCbbFWrNhGqTYRqk636k61aR-urbf-xXJn6r3EbZgTeT8CvpjO3_91YfZyfnsQq-l9O_jYMzu_8VBRcYIhyOsnxE8x6J2t_rUROc66WXw_V8ZKdLI7OhFpG_vXEW-2U_uGboC7PCWAOgFkuaUEfAEJbp-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213836128</pqid></control><display><type>article</type><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Thas, Olivier ; Rayner, J. C. W.</creator><creatorcontrib>Thas, Olivier ; Rayner, J. C. W.</creatorcontrib><description>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2005.00351.x</identifier><identifier>PMID: 16135032</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K: Blackwell Publishing</publisher><subject>Animals ; Biometrics ; biometry ; Computer Simulation ; data collection ; Data Interpretation, Statistical ; Estimation methods ; Estimators ; Fetal Movement - physiology ; Generalized score test ; Hypothesis testing ; Mathematical independent variables ; Mathematical moments ; Maximum likelihood estimation ; Neyman smooth test ; Null hypothesis ; Orthonormal polynomials ; Parametric models ; Poisson Distribution ; Polynomials ; Regression Analysis ; Sheep - embryology ; Statistics</subject><ispartof>Biometrics, 2005-09, Vol.61 (3), p.808-815</ispartof><rights>Copyright 2005 The International Biometric Society</rights><rights>The International Biometric Society, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</citedby><cites>FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3695610$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3695610$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16135032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thas, Olivier</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</description><subject>Animals</subject><subject>Biometrics</subject><subject>biometry</subject><subject>Computer Simulation</subject><subject>data collection</subject><subject>Data Interpretation, Statistical</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Fetal Movement - physiology</subject><subject>Generalized score test</subject><subject>Hypothesis testing</subject><subject>Mathematical independent variables</subject><subject>Mathematical moments</subject><subject>Maximum likelihood estimation</subject><subject>Neyman smooth test</subject><subject>Null hypothesis</subject><subject>Orthonormal polynomials</subject><subject>Parametric models</subject><subject>Poisson Distribution</subject><subject>Polynomials</subject><subject>Regression Analysis</subject><subject>Sheep - embryology</subject><subject>Statistics</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhDRBELNglXP_GWbCAAu1UU1qprQaxsZzEpkkzcbETMd31EfqMPEk9ZDRIrPDG1zrfuffqGKEEQ4bjeddmmDOcAiOQEQCeAVCOs_UjNNsJj9EMAERKGf62h56F0MZnwYE8RXtYYMqBkhkqzlfODVfJhQlDSKzzyXBlku_Gu9939_PednowdXLmmhBcn3xqwuCbchwa1z9HT6zugnmxvffR5ZfPFwdH6eL0cH7wYZFWLM9xmudWAtRFGUdWNidEc1bF2poauGG15aClLJkASXRpiKhtQUjBQHIprCzoPno79b3x7ucY11SrJlSm63Rv3BiUkJzxAnAE3_wDtm70fdxNEUwlFZjICMkJqrwLwRurbnyz0v5WYVCbbFWrNhGqTYRqk636k61aR-urbf-xXJn6r3EbZgTeT8CvpjO3_91YfZyfnsQq-l9O_jYMzu_8VBRcYIhyOsnxE8x6J2t_rUROc66WXw_V8ZKdLI7OhFpG_vXEW-2U_uGboC7PCWAOgFkuaUEfAEJbp-0</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Thas, Olivier</creator><creator>Rayner, J. C. W.</creator><general>Blackwell Publishing</general><general>International Biometric Society</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>200509</creationdate><title>Smooth Tests for the Zero‐Inflated Poisson Distribution</title><author>Thas, Olivier ; Rayner, J. C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-77f800d9b613cf722a54c613fed05e4df50a88b46082abe26df9229408586f893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Biometrics</topic><topic>biometry</topic><topic>Computer Simulation</topic><topic>data collection</topic><topic>Data Interpretation, Statistical</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Fetal Movement - physiology</topic><topic>Generalized score test</topic><topic>Hypothesis testing</topic><topic>Mathematical independent variables</topic><topic>Mathematical moments</topic><topic>Maximum likelihood estimation</topic><topic>Neyman smooth test</topic><topic>Null hypothesis</topic><topic>Orthonormal polynomials</topic><topic>Parametric models</topic><topic>Poisson Distribution</topic><topic>Polynomials</topic><topic>Regression Analysis</topic><topic>Sheep - embryology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thas, Olivier</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thas, Olivier</au><au>Rayner, J. C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Tests for the Zero‐Inflated Poisson Distribution</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2005-09</date><risdate>2005</risdate><volume>61</volume><issue>3</issue><spage>808</spage><epage>815</epage><pages>808-815</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>In this article we construct three smooth goodness‐of‐fit tests for testing for the zero‐inflated Poisson (ZIP) distribution against general smooth alternatives in the sense of Neyman. We apply our tests to a data set previously claimed to be ZIP distributed, and show that the ZIP is not a good model to describe the data. At rejection of the null hypothesis of ZIP, the individual components of the test statistic, which are directly related to interpretable parameters in a smooth model, may be used to gain insight into an alternative distribution.</abstract><cop>350 Main Street , Malden , MA 02148 , U.S.A , and P.O. Box 1354, 9600 Garsington Road , Oxford OX4 2DQ , U.K</cop><pub>Blackwell Publishing</pub><pmid>16135032</pmid><doi>10.1111/j.1541-0420.2005.00351.x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2005-09, Vol.61 (3), p.808-815 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_68545901 |
source | MEDLINE; JSTOR Mathematics & Statistics; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Animals Biometrics biometry Computer Simulation data collection Data Interpretation, Statistical Estimation methods Estimators Fetal Movement - physiology Generalized score test Hypothesis testing Mathematical independent variables Mathematical moments Maximum likelihood estimation Neyman smooth test Null hypothesis Orthonormal polynomials Parametric models Poisson Distribution Polynomials Regression Analysis Sheep - embryology Statistics |
title | Smooth Tests for the Zero‐Inflated Poisson Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Tests%20for%20the%20Zero%E2%80%90Inflated%20Poisson%20Distribution&rft.jtitle=Biometrics&rft.au=Thas,%20Olivier&rft.date=2005-09&rft.volume=61&rft.issue=3&rft.spage=808&rft.epage=815&rft.pages=808-815&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2005.00351.x&rft_dat=%3Cjstor_proqu%3E3695610%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213836128&rft_id=info:pmid/16135032&rft_jstor_id=3695610&rfr_iscdi=true |