γ-Turn types prediction in proteins using the support vector machines
Recently, two different models have been developed for predicting γ-turns in proteins by Kaur and Raghava [2002. An evaluation of β-turn prediction methods. Bioinformatics 18, 1508–1514; 2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Prote...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2007-12, Vol.249 (4), p.785-790 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 790 |
---|---|
container_issue | 4 |
container_start_page | 785 |
container_title | Journal of theoretical biology |
container_volume | 249 |
creator | Jahandideh, Samad Sarvestani, Amir Sabet Abdolmaleki, Parviz Jahandideh, Mina Barfeie, Mahdyar |
description | Recently, two different models have been developed for predicting γ-turns in proteins by Kaur and Raghava [2002. An evaluation of β-turn prediction methods. Bioinformatics 18, 1508–1514; 2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923–929]. However, the major limitation of previous methods is inability in predicting γ-turns types. Thus, there is a need to predict γ-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting γ-turn types in proteins. The high rates of prediction accuracy showed that the formation of γ-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone. |
doi_str_mv | 10.1016/j.jtbi.2007.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68545457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519307004201</els_id><sourcerecordid>68545457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-65f6618e1b4e963414c8cbb4b9585ad032f43a5c4429d20df9e0d14bb711962b3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWqsv4EH25G3XyeZPG_AixapQ8FLPYZOdtSnt7ppkhT6X7-EzmdKCN5nDMMM3H_P9CLmhUFCg8n5drKNxRQkwKUAVAOUJGVFQIp8KTk_JKG3KXFDFLshlCGsAUJzJc3JBJ4pJBmJE5j_f-XLwbRZ3PYas91g7G13XZq5NUxfRtSEbgms_srjCLAx93_mYfaGNnc-2lV25FsMVOWuqTcDrYx-T9_nTcvaSL96eX2ePi9wywWMuRSMlnSI1HJVknHI7tcZwo8RUVDWwsuGsEpbzUtUl1I1CqCk3ZkKpkqVhY3J38E2vfQ4Yot66YHGzqVrshqBlSp5qkoTlQWh9F4LHRvfebSu_0xT0np5e6z09vaenQenEKh3dHt0Hs8X67-SIKwkeDgJMGb8ceh2sw9YmaD4B0XXn_vP_BfCHgWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68545457</pqid></control><display><type>article</type><title>γ-Turn types prediction in proteins using the support vector machines</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jahandideh, Samad ; Sarvestani, Amir Sabet ; Abdolmaleki, Parviz ; Jahandideh, Mina ; Barfeie, Mahdyar</creator><creatorcontrib>Jahandideh, Samad ; Sarvestani, Amir Sabet ; Abdolmaleki, Parviz ; Jahandideh, Mina ; Barfeie, Mahdyar</creatorcontrib><description>Recently, two different models have been developed for predicting γ-turns in proteins by Kaur and Raghava [2002. An evaluation of β-turn prediction methods. Bioinformatics 18, 1508–1514; 2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923–929]. However, the major limitation of previous methods is inability in predicting γ-turns types. Thus, there is a need to predict γ-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting γ-turn types in proteins. The high rates of prediction accuracy showed that the formation of γ-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2007.09.002</identifier><identifier>PMID: 17936305</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Aminopeptidases - chemistry ; Computational Biology - methods ; Databases, Protein ; Models, Chemical ; Protein Structure, Secondary ; Proteins - chemistry ; Support vector machines (SVMs) ; Tripeptides ; γ-Turn types</subject><ispartof>Journal of theoretical biology, 2007-12, Vol.249 (4), p.785-790</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-65f6618e1b4e963414c8cbb4b9585ad032f43a5c4429d20df9e0d14bb711962b3</citedby><cites>FETCH-LOGICAL-c354t-65f6618e1b4e963414c8cbb4b9585ad032f43a5c4429d20df9e0d14bb711962b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2007.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17936305$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jahandideh, Samad</creatorcontrib><creatorcontrib>Sarvestani, Amir Sabet</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Jahandideh, Mina</creatorcontrib><creatorcontrib>Barfeie, Mahdyar</creatorcontrib><title>γ-Turn types prediction in proteins using the support vector machines</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Recently, two different models have been developed for predicting γ-turns in proteins by Kaur and Raghava [2002. An evaluation of β-turn prediction methods. Bioinformatics 18, 1508–1514; 2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923–929]. However, the major limitation of previous methods is inability in predicting γ-turns types. Thus, there is a need to predict γ-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting γ-turn types in proteins. The high rates of prediction accuracy showed that the formation of γ-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.</description><subject>Algorithms</subject><subject>Aminopeptidases - chemistry</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Models, Chemical</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Support vector machines (SVMs)</subject><subject>Tripeptides</subject><subject>γ-Turn types</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9KAzEQxoMoWqsv4EH25G3XyeZPG_AixapQ8FLPYZOdtSnt7ppkhT6X7-EzmdKCN5nDMMM3H_P9CLmhUFCg8n5drKNxRQkwKUAVAOUJGVFQIp8KTk_JKG3KXFDFLshlCGsAUJzJc3JBJ4pJBmJE5j_f-XLwbRZ3PYas91g7G13XZq5NUxfRtSEbgms_srjCLAx93_mYfaGNnc-2lV25FsMVOWuqTcDrYx-T9_nTcvaSL96eX2ePi9wywWMuRSMlnSI1HJVknHI7tcZwo8RUVDWwsuGsEpbzUtUl1I1CqCk3ZkKpkqVhY3J38E2vfQ4Yot66YHGzqVrshqBlSp5qkoTlQWh9F4LHRvfebSu_0xT0np5e6z09vaenQenEKh3dHt0Hs8X67-SIKwkeDgJMGb8ceh2sw9YmaD4B0XXn_vP_BfCHgWQ</recordid><startdate>20071221</startdate><enddate>20071221</enddate><creator>Jahandideh, Samad</creator><creator>Sarvestani, Amir Sabet</creator><creator>Abdolmaleki, Parviz</creator><creator>Jahandideh, Mina</creator><creator>Barfeie, Mahdyar</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071221</creationdate><title>γ-Turn types prediction in proteins using the support vector machines</title><author>Jahandideh, Samad ; Sarvestani, Amir Sabet ; Abdolmaleki, Parviz ; Jahandideh, Mina ; Barfeie, Mahdyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-65f6618e1b4e963414c8cbb4b9585ad032f43a5c4429d20df9e0d14bb711962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Aminopeptidases - chemistry</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Models, Chemical</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Support vector machines (SVMs)</topic><topic>Tripeptides</topic><topic>γ-Turn types</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahandideh, Samad</creatorcontrib><creatorcontrib>Sarvestani, Amir Sabet</creatorcontrib><creatorcontrib>Abdolmaleki, Parviz</creatorcontrib><creatorcontrib>Jahandideh, Mina</creatorcontrib><creatorcontrib>Barfeie, Mahdyar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahandideh, Samad</au><au>Sarvestani, Amir Sabet</au><au>Abdolmaleki, Parviz</au><au>Jahandideh, Mina</au><au>Barfeie, Mahdyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>γ-Turn types prediction in proteins using the support vector machines</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2007-12-21</date><risdate>2007</risdate><volume>249</volume><issue>4</issue><spage>785</spage><epage>790</epage><pages>785-790</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Recently, two different models have been developed for predicting γ-turns in proteins by Kaur and Raghava [2002. An evaluation of β-turn prediction methods. Bioinformatics 18, 1508–1514; 2003. A neural-network based method for prediction of γ-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923–929]. However, the major limitation of previous methods is inability in predicting γ-turns types. Thus, there is a need to predict γ-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting γ-turn types in proteins. The high rates of prediction accuracy showed that the formation of γ-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17936305</pmid><doi>10.1016/j.jtbi.2007.09.002</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2007-12, Vol.249 (4), p.785-790 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_68545457 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Aminopeptidases - chemistry Computational Biology - methods Databases, Protein Models, Chemical Protein Structure, Secondary Proteins - chemistry Support vector machines (SVMs) Tripeptides γ-Turn types |
title | γ-Turn types prediction in proteins using the support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B3-Turn%20types%20prediction%20in%20proteins%20using%20the%20support%20vector%20machines&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Jahandideh,%20Samad&rft.date=2007-12-21&rft.volume=249&rft.issue=4&rft.spage=785&rft.epage=790&rft.pages=785-790&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2007.09.002&rft_dat=%3Cproquest_cross%3E68545457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68545457&rft_id=info:pmid/17936305&rft_els_id=S0022519307004201&rfr_iscdi=true |