State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and...
Gespeichert in:
Veröffentlicht in: | Journal of tissue engineering and regenerative medicine 2007-07, Vol.1 (4), p.245-260 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 4 |
container_start_page | 245 |
container_title | Journal of tissue engineering and regenerative medicine |
container_volume | 1 |
creator | Hutmacher, Dietmar Werner Schantz, Jan Thorsten Lam, Christopher Xu Fu Tan, Kim Cheng Lim, Thiam Chye |
description | Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/term.24 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68542504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68542504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</originalsourceid><addsrcrecordid>eNp10EtP3DAUhmELUXEX_wB5RRcoYMeXOEs0pQMVF4mLWFpOcgyGJJ7aTgv_noQZlVVXto4evYsPoX1Kjikh-UmC0B3nfA1t0ZLlWUGIWF_9ZS74JtqO8WU8CinYBtqkijDFqdhC7i6ZBNhbnJ4Bm5Cw6RtshzQEwI0LUCfn-ziBWBtrfdtklYnQ4Mr3gKF_cj1AcP0TtsF32ODK-W5MBmfaiBcQ4mJq_IFd9M2OJ9hbvTvo4efZ_ew8u7yZX8xOL7Oa05JnUFlBm0KSnFEleWWhtEqVDSkZKUsiC8ELzhVjNpdWSQrcMGNsUataMEEE20GHy-4i-N8DxKQ7F2toW9ODH6KWSvBcED7C70tYBx9jAKsXwXUmvGtK9LSqnlbV-SQPVsmh6qD5cqsZR3C0BH9dC-__6-j7s9urz1y21C4mePunTXjVsmCF0I_Xc02vfs0K8uNcz9kHvZaQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68542504</pqid></control><display><type>article</type><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</creator><creatorcontrib>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</creatorcontrib><description>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.24</identifier><identifier>PMID: 18038415</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Bone and Bones - cytology ; Bone and Bones - metabolism ; bone biodegradable ; calcium-phosphate ; Cell Differentiation ; Humans ; Kinetics ; Porosity ; rapid prototyping ; scaffolds ; synthetic biomaterials ; Tissue Engineering</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2007-07, Vol.1 (4), p.245-260</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</citedby><cites>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.24$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.24$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18038415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutmacher, Dietmar Werner</creatorcontrib><creatorcontrib>Schantz, Jan Thorsten</creatorcontrib><creatorcontrib>Lam, Christopher Xu Fu</creatorcontrib><creatorcontrib>Tan, Kim Cheng</creatorcontrib><creatorcontrib>Lim, Thiam Chye</creatorcontrib><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>bone biodegradable</subject><subject>calcium-phosphate</subject><subject>Cell Differentiation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Porosity</subject><subject>rapid prototyping</subject><subject>scaffolds</subject><subject>synthetic biomaterials</subject><subject>Tissue Engineering</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtP3DAUhmELUXEX_wB5RRcoYMeXOEs0pQMVF4mLWFpOcgyGJJ7aTgv_noQZlVVXto4evYsPoX1Kjikh-UmC0B3nfA1t0ZLlWUGIWF_9ZS74JtqO8WU8CinYBtqkijDFqdhC7i6ZBNhbnJ4Bm5Cw6RtshzQEwI0LUCfn-ziBWBtrfdtklYnQ4Mr3gKF_cj1AcP0TtsF32ODK-W5MBmfaiBcQ4mJq_IFd9M2OJ9hbvTvo4efZ_ew8u7yZX8xOL7Oa05JnUFlBm0KSnFEleWWhtEqVDSkZKUsiC8ELzhVjNpdWSQrcMGNsUataMEEE20GHy-4i-N8DxKQ7F2toW9ODH6KWSvBcED7C70tYBx9jAKsXwXUmvGtK9LSqnlbV-SQPVsmh6qD5cqsZR3C0BH9dC-__6-j7s9urz1y21C4mePunTXjVsmCF0I_Xc02vfs0K8uNcz9kHvZaQCA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hutmacher, Dietmar Werner</creator><creator>Schantz, Jan Thorsten</creator><creator>Lam, Christopher Xu Fu</creator><creator>Tan, Kim Cheng</creator><creator>Lim, Thiam Chye</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><author>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>bone biodegradable</topic><topic>calcium-phosphate</topic><topic>Cell Differentiation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Porosity</topic><topic>rapid prototyping</topic><topic>scaffolds</topic><topic>synthetic biomaterials</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutmacher, Dietmar Werner</creatorcontrib><creatorcontrib>Schantz, Jan Thorsten</creatorcontrib><creatorcontrib>Lam, Christopher Xu Fu</creatorcontrib><creatorcontrib>Tan, Kim Cheng</creatorcontrib><creatorcontrib>Lim, Thiam Chye</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutmacher, Dietmar Werner</au><au>Schantz, Jan Thorsten</au><au>Lam, Christopher Xu Fu</au><au>Tan, Kim Cheng</au><au>Lim, Thiam Chye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2007-07</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>245</spage><epage>260</epage><pages>245-260</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>18038415</pmid><doi>10.1002/term.24</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6254 |
ispartof | Journal of tissue engineering and regenerative medicine, 2007-07, Vol.1 (4), p.245-260 |
issn | 1932-6254 1932-7005 |
language | eng |
recordid | cdi_proquest_miscellaneous_68542504 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biocompatible Materials - metabolism Bone and Bones - cytology Bone and Bones - metabolism bone biodegradable calcium-phosphate Cell Differentiation Humans Kinetics Porosity rapid prototyping scaffolds synthetic biomaterials Tissue Engineering |
title | State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20of%20the%20art%20and%20future%20directions%20of%20scaffold-based%20bone%20engineering%20from%20a%20biomaterials%20perspective&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Hutmacher,%20Dietmar%20Werner&rft.date=2007-07&rft.volume=1&rft.issue=4&rft.spage=245&rft.epage=260&rft.pages=245-260&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.24&rft_dat=%3Cproquest_cross%3E68542504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68542504&rft_id=info:pmid/18038415&rfr_iscdi=true |