State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective

Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tissue engineering and regenerative medicine 2007-07, Vol.1 (4), p.245-260
Hauptverfasser: Hutmacher, Dietmar Werner, Schantz, Jan Thorsten, Lam, Christopher Xu Fu, Tan, Kim Cheng, Lim, Thiam Chye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 4
container_start_page 245
container_title Journal of tissue engineering and regenerative medicine
container_volume 1
creator Hutmacher, Dietmar Werner
Schantz, Jan Thorsten
Lam, Christopher Xu Fu
Tan, Kim Cheng
Lim, Thiam Chye
description Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/term.24
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68542504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68542504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</originalsourceid><addsrcrecordid>eNp10EtP3DAUhmELUXEX_wB5RRcoYMeXOEs0pQMVF4mLWFpOcgyGJJ7aTgv_noQZlVVXto4evYsPoX1Kjikh-UmC0B3nfA1t0ZLlWUGIWF_9ZS74JtqO8WU8CinYBtqkijDFqdhC7i6ZBNhbnJ4Bm5Cw6RtshzQEwI0LUCfn-ziBWBtrfdtklYnQ4Mr3gKF_cj1AcP0TtsF32ODK-W5MBmfaiBcQ4mJq_IFd9M2OJ9hbvTvo4efZ_ew8u7yZX8xOL7Oa05JnUFlBm0KSnFEleWWhtEqVDSkZKUsiC8ELzhVjNpdWSQrcMGNsUataMEEE20GHy-4i-N8DxKQ7F2toW9ODH6KWSvBcED7C70tYBx9jAKsXwXUmvGtK9LSqnlbV-SQPVsmh6qD5cqsZR3C0BH9dC-__6-j7s9urz1y21C4mePunTXjVsmCF0I_Xc02vfs0K8uNcz9kHvZaQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68542504</pqid></control><display><type>article</type><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</creator><creatorcontrib>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</creatorcontrib><description>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1932-6254</identifier><identifier>EISSN: 1932-7005</identifier><identifier>DOI: 10.1002/term.24</identifier><identifier>PMID: 18038415</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Biocompatible Materials - metabolism ; Bone and Bones - cytology ; Bone and Bones - metabolism ; bone biodegradable ; calcium-phosphate ; Cell Differentiation ; Humans ; Kinetics ; Porosity ; rapid prototyping ; scaffolds ; synthetic biomaterials ; Tissue Engineering</subject><ispartof>Journal of tissue engineering and regenerative medicine, 2007-07, Vol.1 (4), p.245-260</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</citedby><cites>FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fterm.24$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fterm.24$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18038415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutmacher, Dietmar Werner</creatorcontrib><creatorcontrib>Schantz, Jan Thorsten</creatorcontrib><creatorcontrib>Lam, Christopher Xu Fu</creatorcontrib><creatorcontrib>Tan, Kim Cheng</creatorcontrib><creatorcontrib>Lim, Thiam Chye</creatorcontrib><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><title>Journal of tissue engineering and regenerative medicine</title><addtitle>J Tissue Eng Regen Med</addtitle><description>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Animals</subject><subject>Biocompatible Materials - metabolism</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>bone biodegradable</subject><subject>calcium-phosphate</subject><subject>Cell Differentiation</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Porosity</subject><subject>rapid prototyping</subject><subject>scaffolds</subject><subject>synthetic biomaterials</subject><subject>Tissue Engineering</subject><issn>1932-6254</issn><issn>1932-7005</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtP3DAUhmELUXEX_wB5RRcoYMeXOEs0pQMVF4mLWFpOcgyGJJ7aTgv_noQZlVVXto4evYsPoX1Kjikh-UmC0B3nfA1t0ZLlWUGIWF_9ZS74JtqO8WU8CinYBtqkijDFqdhC7i6ZBNhbnJ4Bm5Cw6RtshzQEwI0LUCfn-ziBWBtrfdtklYnQ4Mr3gKF_cj1AcP0TtsF32ODK-W5MBmfaiBcQ4mJq_IFd9M2OJ9hbvTvo4efZ_ew8u7yZX8xOL7Oa05JnUFlBm0KSnFEleWWhtEqVDSkZKUsiC8ELzhVjNpdWSQrcMGNsUataMEEE20GHy-4i-N8DxKQ7F2toW9ODH6KWSvBcED7C70tYBx9jAKsXwXUmvGtK9LSqnlbV-SQPVsmh6qD5cqsZR3C0BH9dC-__6-j7s9urz1y21C4mePunTXjVsmCF0I_Xc02vfs0K8uNcz9kHvZaQCA</recordid><startdate>200707</startdate><enddate>200707</enddate><creator>Hutmacher, Dietmar Werner</creator><creator>Schantz, Jan Thorsten</creator><creator>Lam, Christopher Xu Fu</creator><creator>Tan, Kim Cheng</creator><creator>Lim, Thiam Chye</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200707</creationdate><title>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</title><author>Hutmacher, Dietmar Werner ; Schantz, Jan Thorsten ; Lam, Christopher Xu Fu ; Tan, Kim Cheng ; Lim, Thiam Chye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-ebf51d760231864bfe9f889d09309906754744833f26f861e4a3aaf7c8c535053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biocompatible Materials - metabolism</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>bone biodegradable</topic><topic>calcium-phosphate</topic><topic>Cell Differentiation</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Porosity</topic><topic>rapid prototyping</topic><topic>scaffolds</topic><topic>synthetic biomaterials</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutmacher, Dietmar Werner</creatorcontrib><creatorcontrib>Schantz, Jan Thorsten</creatorcontrib><creatorcontrib>Lam, Christopher Xu Fu</creatorcontrib><creatorcontrib>Tan, Kim Cheng</creatorcontrib><creatorcontrib>Lim, Thiam Chye</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of tissue engineering and regenerative medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutmacher, Dietmar Werner</au><au>Schantz, Jan Thorsten</au><au>Lam, Christopher Xu Fu</au><au>Tan, Kim Cheng</au><au>Lim, Thiam Chye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective</atitle><jtitle>Journal of tissue engineering and regenerative medicine</jtitle><addtitle>J Tissue Eng Regen Med</addtitle><date>2007-07</date><risdate>2007</risdate><volume>1</volume><issue>4</issue><spage>245</spage><epage>260</epage><pages>245-260</pages><issn>1932-6254</issn><eissn>1932-7005</eissn><abstract>Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>18038415</pmid><doi>10.1002/term.24</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-6254
ispartof Journal of tissue engineering and regenerative medicine, 2007-07, Vol.1 (4), p.245-260
issn 1932-6254
1932-7005
language eng
recordid cdi_proquest_miscellaneous_68542504
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biocompatible Materials - metabolism
Bone and Bones - cytology
Bone and Bones - metabolism
bone biodegradable
calcium-phosphate
Cell Differentiation
Humans
Kinetics
Porosity
rapid prototyping
scaffolds
synthetic biomaterials
Tissue Engineering
title State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=State%20of%20the%20art%20and%20future%20directions%20of%20scaffold-based%20bone%20engineering%20from%20a%20biomaterials%20perspective&rft.jtitle=Journal%20of%20tissue%20engineering%20and%20regenerative%20medicine&rft.au=Hutmacher,%20Dietmar%20Werner&rft.date=2007-07&rft.volume=1&rft.issue=4&rft.spage=245&rft.epage=260&rft.pages=245-260&rft.issn=1932-6254&rft.eissn=1932-7005&rft_id=info:doi/10.1002/term.24&rft_dat=%3Cproquest_cross%3E68542504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68542504&rft_id=info:pmid/18038415&rfr_iscdi=true