Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis

Two approaches to shift the acylglycerol equilibrium were tested as follows:  addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2005-09, Vol.53 (18), p.7059-7066
Hauptverfasser: Kristensen, Janni Brogaard, Xu, Xuebing, Mu, Huiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7066
container_issue 18
container_start_page 7059
container_title Journal of agricultural and food chemistry
container_volume 53
creator Kristensen, Janni Brogaard
Xu, Xuebing
Mu, Huiling
description Two approaches to shift the acylglycerol equilibrium were tested as follows:  addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following:  no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation
doi_str_mv 10.1021/jf0507745
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68538600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17129284</sourcerecordid><originalsourceid>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYrsLB14AfGElDoGxHcfJcemyC1KlLXQrcbMcx6lc0rh4EonsG_DWuDTaXpDwwXP4P__jmT9JXlF4T4HRD9sGBEiZiSfJjAoGqaC0eJrMIIppIXJ6lpwjbgGgEBKeJ2c0p5zGM0t-L4M3FpHc7Xu3cw-6d74ja3TdhnyzuPcdWrIaQqONJdcW3aYjuqvJ0rW-J8tWd_EOvh7M34e-IdfO9jqMsWoztpt2NDb4Fkk1koXba7TpXPe6HR9sTW4ndUSHL5JnjW7RvpzqRbK--XQ__5wu7m6_zK8WqRbA-lTmMqPaypJnOi-NgDrnlMtCHHZgGgaVgKwGXsXxjKwqqGVtWZYLDlDWrOIXyeXRdx_8z8Fir3YOjW3jKNYPqPJC8CIH-C9IJWUlK7IIvjuCJnjEYBu1D24Xd6AoqENA6jGgyL6eTIdqZ-sTOSUSgbcToNHotgm6Mw5PXGxKaSkjlx45h7399ajr8EPlkkuh7pcr9ZXffF-V84_q4PvmyDfaK70J0XO9YkA5xB-KUrJTZ21Qbf0QuhjDP0b4AyxyvHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17129284</pqid></control><display><type>article</type><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</creator><creatorcontrib>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</creatorcontrib><description>Two approaches to shift the acylglycerol equilibrium were tested as follows:  addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following:  no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf0507745</identifier><identifier>PMID: 16131111</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Candida antarctica ; Canola Oil ; diacylglycerol oil ; diacylglycerols ; Diet ; Diglycerides - biosynthesis ; Diglycerides - chemistry ; enzymatic hydrolysis ; enzyme activity ; fatty acid composition ; Fatty Acids - analysis ; Fatty Acids, Monounsaturated ; Food industries ; food processing ; Fundamental and applied biological sciences. Psychology ; Glycerol - metabolism ; glycerolysis ; Lipase - metabolism ; monoacylglycerols ; Plant Oils - metabolism ; rapeseed oil ; response surface methodology ; Sunflower Oil ; synthesis ; temperature ; triacylglycerol lipase</subject><ispartof>Journal of agricultural and food chemistry, 2005-09, Vol.53 (18), p.7059-7066</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</citedby><cites>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf0507745$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf0507745$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17121197$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16131111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kristensen, Janni Brogaard</creatorcontrib><creatorcontrib>Xu, Xuebing</creatorcontrib><creatorcontrib>Mu, Huiling</creatorcontrib><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Two approaches to shift the acylglycerol equilibrium were tested as follows:  addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following:  no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</description><subject>Biological and medical sciences</subject><subject>Candida antarctica</subject><subject>Canola Oil</subject><subject>diacylglycerol oil</subject><subject>diacylglycerols</subject><subject>Diet</subject><subject>Diglycerides - biosynthesis</subject><subject>Diglycerides - chemistry</subject><subject>enzymatic hydrolysis</subject><subject>enzyme activity</subject><subject>fatty acid composition</subject><subject>Fatty Acids - analysis</subject><subject>Fatty Acids, Monounsaturated</subject><subject>Food industries</subject><subject>food processing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - metabolism</subject><subject>glycerolysis</subject><subject>Lipase - metabolism</subject><subject>monoacylglycerols</subject><subject>Plant Oils - metabolism</subject><subject>rapeseed oil</subject><subject>response surface methodology</subject><subject>Sunflower Oil</subject><subject>synthesis</subject><subject>temperature</subject><subject>triacylglycerol lipase</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYrsLB14AfGElDoGxHcfJcemyC1KlLXQrcbMcx6lc0rh4EonsG_DWuDTaXpDwwXP4P__jmT9JXlF4T4HRD9sGBEiZiSfJjAoGqaC0eJrMIIppIXJ6lpwjbgGgEBKeJ2c0p5zGM0t-L4M3FpHc7Xu3cw-6d74ja3TdhnyzuPcdWrIaQqONJdcW3aYjuqvJ0rW-J8tWd_EOvh7M34e-IdfO9jqMsWoztpt2NDb4Fkk1koXba7TpXPe6HR9sTW4ndUSHL5JnjW7RvpzqRbK--XQ__5wu7m6_zK8WqRbA-lTmMqPaypJnOi-NgDrnlMtCHHZgGgaVgKwGXsXxjKwqqGVtWZYLDlDWrOIXyeXRdx_8z8Fir3YOjW3jKNYPqPJC8CIH-C9IJWUlK7IIvjuCJnjEYBu1D24Xd6AoqENA6jGgyL6eTIdqZ-sTOSUSgbcToNHotgm6Mw5PXGxKaSkjlx45h7399ajr8EPlkkuh7pcr9ZXffF-V84_q4PvmyDfaK70J0XO9YkA5xB-KUrJTZ21Qbf0QuhjDP0b4AyxyvHU</recordid><startdate>20050907</startdate><enddate>20050907</enddate><creator>Kristensen, Janni Brogaard</creator><creator>Xu, Xuebing</creator><creator>Mu, Huiling</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050907</creationdate><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><author>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Candida antarctica</topic><topic>Canola Oil</topic><topic>diacylglycerol oil</topic><topic>diacylglycerols</topic><topic>Diet</topic><topic>Diglycerides - biosynthesis</topic><topic>Diglycerides - chemistry</topic><topic>enzymatic hydrolysis</topic><topic>enzyme activity</topic><topic>fatty acid composition</topic><topic>Fatty Acids - analysis</topic><topic>Fatty Acids, Monounsaturated</topic><topic>Food industries</topic><topic>food processing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - metabolism</topic><topic>glycerolysis</topic><topic>Lipase - metabolism</topic><topic>monoacylglycerols</topic><topic>Plant Oils - metabolism</topic><topic>rapeseed oil</topic><topic>response surface methodology</topic><topic>Sunflower Oil</topic><topic>synthesis</topic><topic>temperature</topic><topic>triacylglycerol lipase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, Janni Brogaard</creatorcontrib><creatorcontrib>Xu, Xuebing</creatorcontrib><creatorcontrib>Mu, Huiling</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, Janni Brogaard</au><au>Xu, Xuebing</au><au>Mu, Huiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2005-09-07</date><risdate>2005</risdate><volume>53</volume><issue>18</issue><spage>7059</spage><epage>7066</epage><pages>7059-7066</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Two approaches to shift the acylglycerol equilibrium were tested as follows:  addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following:  no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16131111</pmid><doi>10.1021/jf0507745</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2005-09, Vol.53 (18), p.7059-7066
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_68538600
source ACS Publications; MEDLINE
subjects Biological and medical sciences
Candida antarctica
Canola Oil
diacylglycerol oil
diacylglycerols
Diet
Diglycerides - biosynthesis
Diglycerides - chemistry
enzymatic hydrolysis
enzyme activity
fatty acid composition
Fatty Acids - analysis
Fatty Acids, Monounsaturated
Food industries
food processing
Fundamental and applied biological sciences. Psychology
Glycerol - metabolism
glycerolysis
Lipase - metabolism
monoacylglycerols
Plant Oils - metabolism
rapeseed oil
response surface methodology
Sunflower Oil
synthesis
temperature
triacylglycerol lipase
title Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Optimization%20Using%20Response%20Surface%20Design%20and%20Pilot%20Plant%20Production%20of%20Dietary%20Diacylglycerols%20by%20Lipase-Catalyzed%20Glycerolysis&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Kristensen,%20Janni%20Brogaard&rft.date=2005-09-07&rft.volume=53&rft.issue=18&rft.spage=7059&rft.epage=7066&rft.pages=7059-7066&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf0507745&rft_dat=%3Cproquest_cross%3E17129284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17129284&rft_id=info:pmid/16131111&rfr_iscdi=true