Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis
Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five fact...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2005-09, Vol.53 (18), p.7059-7066 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7066 |
---|---|
container_issue | 18 |
container_start_page | 7059 |
container_title | Journal of agricultural and food chemistry |
container_volume | 53 |
creator | Kristensen, Janni Brogaard Xu, Xuebing Mu, Huiling |
description | Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following: no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation |
doi_str_mv | 10.1021/jf0507745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68538600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17129284</sourcerecordid><originalsourceid>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEYrsLB14AfGElDoGxHcfJcemyC1KlLXQrcbMcx6lc0rh4EonsG_DWuDTaXpDwwXP4P__jmT9JXlF4T4HRD9sGBEiZiSfJjAoGqaC0eJrMIIppIXJ6lpwjbgGgEBKeJ2c0p5zGM0t-L4M3FpHc7Xu3cw-6d74ja3TdhnyzuPcdWrIaQqONJdcW3aYjuqvJ0rW-J8tWd_EOvh7M34e-IdfO9jqMsWoztpt2NDb4Fkk1koXba7TpXPe6HR9sTW4ndUSHL5JnjW7RvpzqRbK--XQ__5wu7m6_zK8WqRbA-lTmMqPaypJnOi-NgDrnlMtCHHZgGgaVgKwGXsXxjKwqqGVtWZYLDlDWrOIXyeXRdx_8z8Fir3YOjW3jKNYPqPJC8CIH-C9IJWUlK7IIvjuCJnjEYBu1D24Xd6AoqENA6jGgyL6eTIdqZ-sTOSUSgbcToNHotgm6Mw5PXGxKaSkjlx45h7399ajr8EPlkkuh7pcr9ZXffF-V84_q4PvmyDfaK70J0XO9YkA5xB-KUrJTZ21Qbf0QuhjDP0b4AyxyvHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17129284</pqid></control><display><type>article</type><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</creator><creatorcontrib>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</creatorcontrib><description>Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following: no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf0507745</identifier><identifier>PMID: 16131111</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Candida antarctica ; Canola Oil ; diacylglycerol oil ; diacylglycerols ; Diet ; Diglycerides - biosynthesis ; Diglycerides - chemistry ; enzymatic hydrolysis ; enzyme activity ; fatty acid composition ; Fatty Acids - analysis ; Fatty Acids, Monounsaturated ; Food industries ; food processing ; Fundamental and applied biological sciences. Psychology ; Glycerol - metabolism ; glycerolysis ; Lipase - metabolism ; monoacylglycerols ; Plant Oils - metabolism ; rapeseed oil ; response surface methodology ; Sunflower Oil ; synthesis ; temperature ; triacylglycerol lipase</subject><ispartof>Journal of agricultural and food chemistry, 2005-09, Vol.53 (18), p.7059-7066</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</citedby><cites>FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jf0507745$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jf0507745$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17121197$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16131111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kristensen, Janni Brogaard</creatorcontrib><creatorcontrib>Xu, Xuebing</creatorcontrib><creatorcontrib>Mu, Huiling</creatorcontrib><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following: no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</description><subject>Biological and medical sciences</subject><subject>Candida antarctica</subject><subject>Canola Oil</subject><subject>diacylglycerol oil</subject><subject>diacylglycerols</subject><subject>Diet</subject><subject>Diglycerides - biosynthesis</subject><subject>Diglycerides - chemistry</subject><subject>enzymatic hydrolysis</subject><subject>enzyme activity</subject><subject>fatty acid composition</subject><subject>Fatty Acids - analysis</subject><subject>Fatty Acids, Monounsaturated</subject><subject>Food industries</subject><subject>food processing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - metabolism</subject><subject>glycerolysis</subject><subject>Lipase - metabolism</subject><subject>monoacylglycerols</subject><subject>Plant Oils - metabolism</subject><subject>rapeseed oil</subject><subject>response surface methodology</subject><subject>Sunflower Oil</subject><subject>synthesis</subject><subject>temperature</subject><subject>triacylglycerol lipase</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcGO0zAQhiMEYrsLB14AfGElDoGxHcfJcemyC1KlLXQrcbMcx6lc0rh4EonsG_DWuDTaXpDwwXP4P__jmT9JXlF4T4HRD9sGBEiZiSfJjAoGqaC0eJrMIIppIXJ6lpwjbgGgEBKeJ2c0p5zGM0t-L4M3FpHc7Xu3cw-6d74ja3TdhnyzuPcdWrIaQqONJdcW3aYjuqvJ0rW-J8tWd_EOvh7M34e-IdfO9jqMsWoztpt2NDb4Fkk1koXba7TpXPe6HR9sTW4ndUSHL5JnjW7RvpzqRbK--XQ__5wu7m6_zK8WqRbA-lTmMqPaypJnOi-NgDrnlMtCHHZgGgaVgKwGXsXxjKwqqGVtWZYLDlDWrOIXyeXRdx_8z8Fir3YOjW3jKNYPqPJC8CIH-C9IJWUlK7IIvjuCJnjEYBu1D24Xd6AoqENA6jGgyL6eTIdqZ-sTOSUSgbcToNHotgm6Mw5PXGxKaSkjlx45h7399ajr8EPlkkuh7pcr9ZXffF-V84_q4PvmyDfaK70J0XO9YkA5xB-KUrJTZ21Qbf0QuhjDP0b4AyxyvHU</recordid><startdate>20050907</startdate><enddate>20050907</enddate><creator>Kristensen, Janni Brogaard</creator><creator>Xu, Xuebing</creator><creator>Mu, Huiling</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050907</creationdate><title>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</title><author>Kristensen, Janni Brogaard ; Xu, Xuebing ; Mu, Huiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a502t-76741ae7934a69c50d6313785f050cf20b504d03b111c7bb0d7de24653009d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Candida antarctica</topic><topic>Canola Oil</topic><topic>diacylglycerol oil</topic><topic>diacylglycerols</topic><topic>Diet</topic><topic>Diglycerides - biosynthesis</topic><topic>Diglycerides - chemistry</topic><topic>enzymatic hydrolysis</topic><topic>enzyme activity</topic><topic>fatty acid composition</topic><topic>Fatty Acids - analysis</topic><topic>Fatty Acids, Monounsaturated</topic><topic>Food industries</topic><topic>food processing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - metabolism</topic><topic>glycerolysis</topic><topic>Lipase - metabolism</topic><topic>monoacylglycerols</topic><topic>Plant Oils - metabolism</topic><topic>rapeseed oil</topic><topic>response surface methodology</topic><topic>Sunflower Oil</topic><topic>synthesis</topic><topic>temperature</topic><topic>triacylglycerol lipase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, Janni Brogaard</creatorcontrib><creatorcontrib>Xu, Xuebing</creatorcontrib><creatorcontrib>Mu, Huiling</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, Janni Brogaard</au><au>Xu, Xuebing</au><au>Mu, Huiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2005-09-07</date><risdate>2005</risdate><volume>53</volume><issue>18</issue><spage>7059</spage><epage>7066</epage><pages>7059-7066</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following: no extra water, low content of glycerol (molar ratio of 2), temperature of 60−65 °C, 4−5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil. Keywords: Diacylglycerol; glycerolysis; Novozym 435; optimization; response surface methodology; pilot plant production; purification; short path distillation</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16131111</pmid><doi>10.1021/jf0507745</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2005-09, Vol.53 (18), p.7059-7066 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_68538600 |
source | ACS Publications; MEDLINE |
subjects | Biological and medical sciences Candida antarctica Canola Oil diacylglycerol oil diacylglycerols Diet Diglycerides - biosynthesis Diglycerides - chemistry enzymatic hydrolysis enzyme activity fatty acid composition Fatty Acids - analysis Fatty Acids, Monounsaturated Food industries food processing Fundamental and applied biological sciences. Psychology Glycerol - metabolism glycerolysis Lipase - metabolism monoacylglycerols Plant Oils - metabolism rapeseed oil response surface methodology Sunflower Oil synthesis temperature triacylglycerol lipase |
title | Process Optimization Using Response Surface Design and Pilot Plant Production of Dietary Diacylglycerols by Lipase-Catalyzed Glycerolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Optimization%20Using%20Response%20Surface%20Design%20and%20Pilot%20Plant%20Production%20of%20Dietary%20Diacylglycerols%20by%20Lipase-Catalyzed%20Glycerolysis&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Kristensen,%20Janni%20Brogaard&rft.date=2005-09-07&rft.volume=53&rft.issue=18&rft.spage=7059&rft.epage=7066&rft.pages=7059-7066&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf0507745&rft_dat=%3Cproquest_cross%3E17129284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17129284&rft_id=info:pmid/16131111&rfr_iscdi=true |