On the meaning of Lamb mode nonpropagating branches

The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2005-07, Vol.118 (1), p.186-192
Hauptverfasser: Simonetti, F., Lowe, M. J. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 186
container_title The Journal of the Acoustical Society of America
container_volume 118
creator Simonetti, F.
Lowe, M. J. S.
description The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [ Rokhlin , J. Acoust. Soc. Am. 85 , 1074-1080 ( 1989 ) ].
doi_str_mv 10.1121/1.1938528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68512041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68512041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</originalsourceid><addsrcrecordid>eNp1kEtLxDAQgIMouq4e_APSi4KHrpk8us1FkMUXFPai55DnbqVN16Z78N-bpQW9yBxmwnyZST6ErgAvAAjcwwIELTkpj9AMOMF5qtkxmmGMIWeiKM7QeYyf6chLKk7RGRSQbjCYIboO2bB1WetUqMMm63xWqVZnbWddFrqw67ud2qjh0NO9Cmbr4gU68aqJ7nLKc_Tx_PS-es2r9cvb6rHKDaNsyLkh1FENlpZuqbRdMk-ssg4rywmxHpwSXHNWcGu1E9T5JRijS1oC0RQLOke349z0iK-9i4Ns62hc06jgun2URcmBYAYJvBtB03cx9s7LXV-3qv-WgOXBkEwxGkrs9TR0r1tnf8lJSQJuJkBFoxp_-HQd_3CCUyqWiXsYuWjqIQnqwv9b10EmyXKSLDsvK0V_ABVxga4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68512041</pqid></control><display><type>article</type><title>On the meaning of Lamb mode nonpropagating branches</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Simonetti, F. ; Lowe, M. J. S.</creator><creatorcontrib>Simonetti, F. ; Lowe, M. J. S.</creatorcontrib><description>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [ Rokhlin , J. Acoust. Soc. Am. 85 , 1074-1080 ( 1989 ) ].</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1938528</identifier><identifier>PMID: 16119341</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Structural acoustics and vibration</subject><ispartof>The Journal of the Acoustical Society of America, 2005-07, Vol.118 (1), p.186-192</ispartof><rights>2005 Acoustical Society of America</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</citedby><cites>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.1938528$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16953397$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16119341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simonetti, F.</creatorcontrib><creatorcontrib>Lowe, M. J. S.</creatorcontrib><title>On the meaning of Lamb mode nonpropagating branches</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [ Rokhlin , J. Acoust. Soc. Am. 85 , 1074-1080 ( 1989 ) ].</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Structural acoustics and vibration</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAQgIMouq4e_APSi4KHrpk8us1FkMUXFPai55DnbqVN16Z78N-bpQW9yBxmwnyZST6ErgAvAAjcwwIELTkpj9AMOMF5qtkxmmGMIWeiKM7QeYyf6chLKk7RGRSQbjCYIboO2bB1WetUqMMm63xWqVZnbWddFrqw67ud2qjh0NO9Cmbr4gU68aqJ7nLKc_Tx_PS-es2r9cvb6rHKDaNsyLkh1FENlpZuqbRdMk-ssg4rywmxHpwSXHNWcGu1E9T5JRijS1oC0RQLOke349z0iK-9i4Ns62hc06jgun2URcmBYAYJvBtB03cx9s7LXV-3qv-WgOXBkEwxGkrs9TR0r1tnf8lJSQJuJkBFoxp_-HQd_3CCUyqWiXsYuWjqIQnqwv9b10EmyXKSLDsvK0V_ABVxga4</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Simonetti, F.</creator><creator>Lowe, M. J. S.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>20050701</creationdate><title>On the meaning of Lamb mode nonpropagating branches</title><author>Simonetti, F. ; Lowe, M. J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonetti, F.</creatorcontrib><creatorcontrib>Lowe, M. J. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonetti, F.</au><au>Lowe, M. J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the meaning of Lamb mode nonpropagating branches</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>118</volume><issue>1</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [ Rokhlin , J. Acoust. Soc. Am. 85 , 1074-1080 ( 1989 ) ].</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>16119341</pmid><doi>10.1121/1.1938528</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2005-07, Vol.118 (1), p.186-192
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_68512041
source AIP Journals Complete; AIP Acoustical Society of America
subjects Acoustics
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Structural acoustics and vibration
title On the meaning of Lamb mode nonpropagating branches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20meaning%20of%20Lamb%20mode%20nonpropagating%20branches&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Simonetti,%20F.&rft.date=2005-07-01&rft.volume=118&rft.issue=1&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.1938528&rft_dat=%3Cproquest_cross%3E68512041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68512041&rft_id=info:pmid/16119341&rfr_iscdi=true