On the meaning of Lamb mode nonpropagating branches
The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along t...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2005-07, Vol.118 (1), p.186-192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 118 |
creator | Simonetti, F. Lowe, M. J. S. |
description | The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [
Rokhlin
,
J. Acoust. Soc. Am.
85
,
1074-1080
(
1989
)
]. |
doi_str_mv | 10.1121/1.1938528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68512041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68512041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</originalsourceid><addsrcrecordid>eNp1kEtLxDAQgIMouq4e_APSi4KHrpk8us1FkMUXFPai55DnbqVN16Z78N-bpQW9yBxmwnyZST6ErgAvAAjcwwIELTkpj9AMOMF5qtkxmmGMIWeiKM7QeYyf6chLKk7RGRSQbjCYIboO2bB1WetUqMMm63xWqVZnbWddFrqw67ud2qjh0NO9Cmbr4gU68aqJ7nLKc_Tx_PS-es2r9cvb6rHKDaNsyLkh1FENlpZuqbRdMk-ssg4rywmxHpwSXHNWcGu1E9T5JRijS1oC0RQLOke349z0iK-9i4Ns62hc06jgun2URcmBYAYJvBtB03cx9s7LXV-3qv-WgOXBkEwxGkrs9TR0r1tnf8lJSQJuJkBFoxp_-HQd_3CCUyqWiXsYuWjqIQnqwv9b10EmyXKSLDsvK0V_ABVxga4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68512041</pqid></control><display><type>article</type><title>On the meaning of Lamb mode nonpropagating branches</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Simonetti, F. ; Lowe, M. J. S.</creator><creatorcontrib>Simonetti, F. ; Lowe, M. J. S.</creatorcontrib><description>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [
Rokhlin
,
J. Acoust. Soc. Am.
85
,
1074-1080
(
1989
)
].</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1938528</identifier><identifier>PMID: 16119341</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Structural acoustics and vibration</subject><ispartof>The Journal of the Acoustical Society of America, 2005-07, Vol.118 (1), p.186-192</ispartof><rights>2005 Acoustical Society of America</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</citedby><cites>FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.1938528$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1564,4509,27922,27923,76154</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16953397$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16119341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Simonetti, F.</creatorcontrib><creatorcontrib>Lowe, M. J. S.</creatorcontrib><title>On the meaning of Lamb mode nonpropagating branches</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [
Rokhlin
,
J. Acoust. Soc. Am.
85
,
1074-1080
(
1989
)
].</description><subject>Acoustics</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Structural acoustics and vibration</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAQgIMouq4e_APSi4KHrpk8us1FkMUXFPai55DnbqVN16Z78N-bpQW9yBxmwnyZST6ErgAvAAjcwwIELTkpj9AMOMF5qtkxmmGMIWeiKM7QeYyf6chLKk7RGRSQbjCYIboO2bB1WetUqMMm63xWqVZnbWddFrqw67ud2qjh0NO9Cmbr4gU68aqJ7nLKc_Tx_PS-es2r9cvb6rHKDaNsyLkh1FENlpZuqbRdMk-ssg4rywmxHpwSXHNWcGu1E9T5JRijS1oC0RQLOke349z0iK-9i4Ns62hc06jgun2URcmBYAYJvBtB03cx9s7LXV-3qv-WgOXBkEwxGkrs9TR0r1tnf8lJSQJuJkBFoxp_-HQd_3CCUyqWiXsYuWjqIQnqwv9b10EmyXKSLDsvK0V_ABVxga4</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Simonetti, F.</creator><creator>Lowe, M. J. S.</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>20050701</creationdate><title>On the meaning of Lamb mode nonpropagating branches</title><author>Simonetti, F. ; Lowe, M. J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-5c23e3b1d38e7abd74f2dade0ad522df1ea95b5465ddbe93ef71ccb83812b3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustics</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Structural acoustics and vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simonetti, F.</creatorcontrib><creatorcontrib>Lowe, M. J. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simonetti, F.</au><au>Lowe, M. J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the meaning of Lamb mode nonpropagating branches</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>118</volume><issue>1</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The modes of vibration of an elastic plate are usually divided into propagating and nonpropagating kinds. While nonpropagating modes characterize local vibration nearby a perturbation source, which can be either an external force or a geometrical discontinuity, propagating modes carry energy along the waveguide and account for the vibration far away from the perturbation source. In this paper, by considering that the modes of an absorbing plate are always propagating, it is shown that each elastic mode consists of propagating and nonpropagating branches, which turn into a single propagating mode as soon as internal absorption is considered. Moreover, it is shown how introducing a little material damping leads to a rigorous differentiation of elastic modes when they are connected. A similar result can be obtained by loading the plate with a light fluid [
Rokhlin
,
J. Acoust. Soc. Am.
85
,
1074-1080
(
1989
)
].</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>16119341</pmid><doi>10.1121/1.1938528</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2005-07, Vol.118 (1), p.186-192 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_68512041 |
source | AIP Journals Complete; AIP Acoustical Society of America |
subjects | Acoustics Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Structural acoustics and vibration |
title | On the meaning of Lamb mode nonpropagating branches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20meaning%20of%20Lamb%20mode%20nonpropagating%20branches&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Simonetti,%20F.&rft.date=2005-07-01&rft.volume=118&rft.issue=1&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.1938528&rft_dat=%3Cproquest_cross%3E68512041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68512041&rft_id=info:pmid/16119341&rfr_iscdi=true |