Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase

Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide dea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glycobiology (Oxford) 2007-12, Vol.17 (12), p.1377-1387
Hauptverfasser: Li, Xibing, Wang, Lai-Xi, Wang, Xuesong, Roseman, Saul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue 12
container_start_page 1377
container_title Glycobiology (Oxford)
container_volume 17
creator Li, Xibing
Wang, Lai-Xi
Wang, Xuesong
Roseman, Saul
description Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH₂)₂, or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([³H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)n[rightward arrow] GlcNAc-GlcNH₂-(GlcNAc)n₋₂ + Ac⁻. That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)₂, but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH₂-(GlcNAc)n, closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH₂-(GlcNAc)₃₋₄. The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.
doi_str_mv 10.1093/glycob/cwm096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68507996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/glycob/cwm096</oup_id><sourcerecordid>1386996821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-ad3f1f171416549ab9c745ba7ec6f018ae00f7809b643840cda00f620381a5a63</originalsourceid><addsrcrecordid>eNqF0cGP1CAUBnBiNO64evSqjQfjpe6jUKDetKuuyZo9uGMmXsgrQ2dY2zJCGx1v_udi2mjiZU-Qxy8fkI-QxxReUqjY2a47Gt-cme89VOIOWVEuIC94we6SFVRllQtRqhPyIMYbACqoKu-TEyqV4ooXK_Kr3rvRDVmNIza-cybtosGtzdJw3NvsIwY32OwNmtEGN_XZZ9cE57N67zsb0L5KOwzz6U8cnR8y32aYrQf3bbLZEn_VuZ2PaEyyLoWfWzR2PHYY7UNyr8Uu2kfLekrW795e1xf55dX7D_Xry9yUvBpz3LKWtlRSTkUaYFMZycsGpTWiBarQArRSQdUIzhQHs8U0EAUwRbFEwU7J8zn3EHx6WRx176KxXYeD9VPUQpUgq-p2WABwkAAJPvsP3vgpDOkTuqDASmCcJZTPyAQfY7CtPgTXYzhqCvpPg3puUM8NJv9kCZ2a3m7_6aWyBF7MwE-HW7OWu10c7Y-_GMNXLSSTpb7YfNHyerORFVf6PPmns2_Ra9wFF_X6UwGUAahCUarYbxFfvws</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210350343</pqid></control><display><type>article</type><title>Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Li, Xibing ; Wang, Lai-Xi ; Wang, Xuesong ; Roseman, Saul</creator><creatorcontrib>Li, Xibing ; Wang, Lai-Xi ; Wang, Xuesong ; Roseman, Saul</creatorcontrib><description>Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH₂)₂, or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([³H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)n[rightward arrow] GlcNAc-GlcNH₂-(GlcNAc)n₋₂ + Ac⁻. That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)₂, but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH₂-(GlcNAc)n, closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH₂-(GlcNAc)₃₋₄. The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.</description><identifier>ISSN: 0959-6658</identifier><identifier>EISSN: 1460-2423</identifier><identifier>DOI: 10.1093/glycob/cwm096</identifier><identifier>PMID: 17884842</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amidohydrolases - chemistry ; Amidohydrolases - metabolism ; Carbohydrate Sequence ; Catalysis ; Chitin - chemistry ; Chitin - metabolism ; chitin oligosaccharide deacetylase ; Cloning, Molecular ; Decapoda ; extracellular ; Kinetics ; Light ; Mass Spectrometry - methods ; Models, Biological ; Molecular Sequence Data ; Multigene Family ; Nitrous Acid - chemistry ; Oligosaccharides - chemistry ; penultimate GlcNAc ; Sequence Analysis, DNA ; Spectrometry, Mass, Electrospray Ionization ; Vibrio cholerae ; Vibrio cholerae - metabolism ; Vibrios</subject><ispartof>Glycobiology (Oxford), 2007-12, Vol.17 (12), p.1377-1387</ispartof><rights>Oxford University Press © The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2007</rights><rights>The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-ad3f1f171416549ab9c745ba7ec6f018ae00f7809b643840cda00f620381a5a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,1586,27933,27934</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17884842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xibing</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Wang, Xuesong</creatorcontrib><creatorcontrib>Roseman, Saul</creatorcontrib><title>Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase</title><title>Glycobiology (Oxford)</title><addtitle>Glycobiology</addtitle><description>Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH₂)₂, or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([³H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)n[rightward arrow] GlcNAc-GlcNH₂-(GlcNAc)n₋₂ + Ac⁻. That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)₂, but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH₂-(GlcNAc)n, closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH₂-(GlcNAc)₃₋₄. The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.</description><subject>Amidohydrolases - chemistry</subject><subject>Amidohydrolases - metabolism</subject><subject>Carbohydrate Sequence</subject><subject>Catalysis</subject><subject>Chitin - chemistry</subject><subject>Chitin - metabolism</subject><subject>chitin oligosaccharide deacetylase</subject><subject>Cloning, Molecular</subject><subject>Decapoda</subject><subject>extracellular</subject><subject>Kinetics</subject><subject>Light</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Nitrous Acid - chemistry</subject><subject>Oligosaccharides - chemistry</subject><subject>penultimate GlcNAc</subject><subject>Sequence Analysis, DNA</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - metabolism</subject><subject>Vibrios</subject><issn>0959-6658</issn><issn>1460-2423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cGP1CAUBnBiNO64evSqjQfjpe6jUKDetKuuyZo9uGMmXsgrQ2dY2zJCGx1v_udi2mjiZU-Qxy8fkI-QxxReUqjY2a47Gt-cme89VOIOWVEuIC94we6SFVRllQtRqhPyIMYbACqoKu-TEyqV4ooXK_Kr3rvRDVmNIza-cybtosGtzdJw3NvsIwY32OwNmtEGN_XZZ9cE57N67zsb0L5KOwzz6U8cnR8y32aYrQf3bbLZEn_VuZ2PaEyyLoWfWzR2PHYY7UNyr8Uu2kfLekrW795e1xf55dX7D_Xry9yUvBpz3LKWtlRSTkUaYFMZycsGpTWiBarQArRSQdUIzhQHs8U0EAUwRbFEwU7J8zn3EHx6WRx176KxXYeD9VPUQpUgq-p2WABwkAAJPvsP3vgpDOkTuqDASmCcJZTPyAQfY7CtPgTXYzhqCvpPg3puUM8NJv9kCZ2a3m7_6aWyBF7MwE-HW7OWu10c7Y-_GMNXLSSTpb7YfNHyerORFVf6PPmns2_Ra9wFF_X6UwGUAahCUarYbxFfvws</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Li, Xibing</creator><creator>Wang, Lai-Xi</creator><creator>Wang, Xuesong</creator><creator>Roseman, Saul</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20071201</creationdate><title>Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase</title><author>Li, Xibing ; Wang, Lai-Xi ; Wang, Xuesong ; Roseman, Saul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-ad3f1f171416549ab9c745ba7ec6f018ae00f7809b643840cda00f620381a5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amidohydrolases - chemistry</topic><topic>Amidohydrolases - metabolism</topic><topic>Carbohydrate Sequence</topic><topic>Catalysis</topic><topic>Chitin - chemistry</topic><topic>Chitin - metabolism</topic><topic>chitin oligosaccharide deacetylase</topic><topic>Cloning, Molecular</topic><topic>Decapoda</topic><topic>extracellular</topic><topic>Kinetics</topic><topic>Light</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Nitrous Acid - chemistry</topic><topic>Oligosaccharides - chemistry</topic><topic>penultimate GlcNAc</topic><topic>Sequence Analysis, DNA</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - metabolism</topic><topic>Vibrios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xibing</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Wang, Xuesong</creatorcontrib><creatorcontrib>Roseman, Saul</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Glycobiology (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xibing</au><au>Wang, Lai-Xi</au><au>Wang, Xuesong</au><au>Roseman, Saul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase</atitle><jtitle>Glycobiology (Oxford)</jtitle><addtitle>Glycobiology</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>17</volume><issue>12</issue><spage>1377</spage><epage>1387</epage><pages>1377-1387</pages><issn>0959-6658</issn><eissn>1460-2423</eissn><abstract>Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH₂)₂, or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([³H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)n[rightward arrow] GlcNAc-GlcNH₂-(GlcNAc)n₋₂ + Ac⁻. That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)₂, but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH₂-(GlcNAc)n, closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH₂-(GlcNAc)₃₋₄. The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17884842</pmid><doi>10.1093/glycob/cwm096</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-6658
ispartof Glycobiology (Oxford), 2007-12, Vol.17 (12), p.1377-1387
issn 0959-6658
1460-2423
language eng
recordid cdi_proquest_miscellaneous_68507996
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Amidohydrolases - chemistry
Amidohydrolases - metabolism
Carbohydrate Sequence
Catalysis
Chitin - chemistry
Chitin - metabolism
chitin oligosaccharide deacetylase
Cloning, Molecular
Decapoda
extracellular
Kinetics
Light
Mass Spectrometry - methods
Models, Biological
Molecular Sequence Data
Multigene Family
Nitrous Acid - chemistry
Oligosaccharides - chemistry
penultimate GlcNAc
Sequence Analysis, DNA
Spectrometry, Mass, Electrospray Ionization
Vibrio cholerae
Vibrio cholerae - metabolism
Vibrios
title Chitin Catabolic Cascade in the Marine Bacterium Vibrio Cholerae: Characterization of a Unique Chitin Oligosaccharide Deacetylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitin%20Catabolic%20Cascade%20in%20the%20Marine%20Bacterium%20Vibrio%20Cholerae:%20Characterization%20of%20a%20Unique%20Chitin%20Oligosaccharide%20Deacetylase&rft.jtitle=Glycobiology%20(Oxford)&rft.au=Li,%20Xibing&rft.date=2007-12-01&rft.volume=17&rft.issue=12&rft.spage=1377&rft.epage=1387&rft.pages=1377-1387&rft.issn=0959-6658&rft.eissn=1460-2423&rft_id=info:doi/10.1093/glycob/cwm096&rft_dat=%3Cproquest_cross%3E1386996821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210350343&rft_id=info:pmid/17884842&rft_oup_id=10.1093/glycob/cwm096&rfr_iscdi=true