Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity

This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are impose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 2005-09, Vol.84 (9), p.774-783
Hauptverfasser: Korfage, J.A.M, Koolstra, J.H., Langenbach, G.E.J., van Eijden, T.M.G.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue 9
container_start_page 774
container_title Journal of dental research
container_volume 84
creator Korfage, J.A.M
Koolstra, J.H.
Langenbach, G.E.J.
van Eijden, T.M.G.J.
description This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.
doi_str_mv 10.1177/154405910508400901
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68500554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_154405910508400901</sage_id><sourcerecordid>68500554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-75f6ff3a4724c0e14b993609612a71c5796240556ffdbe21905b064ffffff8743</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhYMoWqsv4EKCC9HF2JtMMpkspVqrVBTU9ZBJMzUyPzWZUbrzIXxCn8QZW1AUvJsLl--cQ3IQ2iNwQogQA8IZAy4JcIgZgASyhnrdMeiu66gHQGkAIeNbaNv7JwAiaRxuoi0SEZAyZj3UjGxqXFAv5gYPq2JeeVvbqsRVhutHg8dNoUp8pV7xdeN1bvzH2_vRrXI1Jsf4xtmZLbEqp3jUlLrTqRzf2VlpM6tVqU1n8yPgzL4Y1wYsdtBGpnJvdle7jx5G5_fDcTC5ubgcnk4CzaKwDgTPoiwLFROUaTCEpVKGEciIUCWI5kJGtP0B3kLT1FAigacQsexrYsHCPjpc-s5d9dwYXyeF9drkuSpN1fgkijm0-g48-AU-VY1rn-MTCpIJQaCD6BLSrvLemSyZO1sot0gIJF0jyd9GWtH-yrlJCzP9lqwqaIHBEvBqZr5j_7H8BOxzkus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209477104</pqid></control><display><type>article</type><title>Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity</title><source>MEDLINE</source><source>SAGE Journals</source><creator>Korfage, J.A.M ; Koolstra, J.H. ; Langenbach, G.E.J. ; van Eijden, T.M.G.J.</creator><creatorcontrib>Korfage, J.A.M ; Koolstra, J.H. ; Langenbach, G.E.J. ; van Eijden, T.M.G.J.</creatorcontrib><description>This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.</description><identifier>ISSN: 0022-0345</identifier><identifier>EISSN: 1544-0591</identifier><identifier>DOI: 10.1177/154405910508400901</identifier><identifier>PMID: 16109984</identifier><identifier>CODEN: JDREAF</identifier><language>eng</language><publisher>United States: SAGE Publications</publisher><subject>Adaptation, Physiological ; Animals ; Dentistry ; Humans ; Masticatory Muscles - anatomy &amp; histology ; Masticatory Muscles - physiology ; Motor Neurons - physiology ; Muscle Contraction ; Muscle Fibers, Skeletal - chemistry ; Muscle Fibers, Skeletal - physiology ; Myosin Heavy Chains - chemistry ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - physiology ; Protein Isoforms ; Recruitment, Neurophysiological</subject><ispartof>Journal of dental research, 2005-09, Vol.84 (9), p.774-783</ispartof><rights>International and American Associations for Dental Research</rights><rights>Copyright American Association for Dental Research/American Academy of Implant Dentistry Sep 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-75f6ff3a4724c0e14b993609612a71c5796240556ffdbe21905b064ffffff8743</citedby><cites>FETCH-LOGICAL-c463t-75f6ff3a4724c0e14b993609612a71c5796240556ffdbe21905b064ffffff8743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/154405910508400901$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/154405910508400901$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,315,781,785,793,21824,27927,27929,27930,43626,43627</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16109984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Korfage, J.A.M</creatorcontrib><creatorcontrib>Koolstra, J.H.</creatorcontrib><creatorcontrib>Langenbach, G.E.J.</creatorcontrib><creatorcontrib>van Eijden, T.M.G.J.</creatorcontrib><title>Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity</title><title>Journal of dental research</title><addtitle>J Dent Res</addtitle><description>This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.</description><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Dentistry</subject><subject>Humans</subject><subject>Masticatory Muscles - anatomy &amp; histology</subject><subject>Masticatory Muscles - physiology</subject><subject>Motor Neurons - physiology</subject><subject>Muscle Contraction</subject><subject>Muscle Fibers, Skeletal - chemistry</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Myosin Heavy Chains - chemistry</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - physiology</subject><subject>Protein Isoforms</subject><subject>Recruitment, Neurophysiological</subject><issn>0022-0345</issn><issn>1544-0591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KAzEUhYMoWqsv4EKCC9HF2JtMMpkspVqrVBTU9ZBJMzUyPzWZUbrzIXxCn8QZW1AUvJsLl--cQ3IQ2iNwQogQA8IZAy4JcIgZgASyhnrdMeiu66gHQGkAIeNbaNv7JwAiaRxuoi0SEZAyZj3UjGxqXFAv5gYPq2JeeVvbqsRVhutHg8dNoUp8pV7xdeN1bvzH2_vRrXI1Jsf4xtmZLbEqp3jUlLrTqRzf2VlpM6tVqU1n8yPgzL4Y1wYsdtBGpnJvdle7jx5G5_fDcTC5ubgcnk4CzaKwDgTPoiwLFROUaTCEpVKGEciIUCWI5kJGtP0B3kLT1FAigacQsexrYsHCPjpc-s5d9dwYXyeF9drkuSpN1fgkijm0-g48-AU-VY1rn-MTCpIJQaCD6BLSrvLemSyZO1sot0gIJF0jyd9GWtH-yrlJCzP9lqwqaIHBEvBqZr5j_7H8BOxzkus</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Korfage, J.A.M</creator><creator>Koolstra, J.H.</creator><creator>Langenbach, G.E.J.</creator><creator>van Eijden, T.M.G.J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>200509</creationdate><title>Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity</title><author>Korfage, J.A.M ; Koolstra, J.H. ; Langenbach, G.E.J. ; van Eijden, T.M.G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-75f6ff3a4724c0e14b993609612a71c5796240556ffdbe21905b064ffffff8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Dentistry</topic><topic>Humans</topic><topic>Masticatory Muscles - anatomy &amp; histology</topic><topic>Masticatory Muscles - physiology</topic><topic>Motor Neurons - physiology</topic><topic>Muscle Contraction</topic><topic>Muscle Fibers, Skeletal - chemistry</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Myosin Heavy Chains - chemistry</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - physiology</topic><topic>Protein Isoforms</topic><topic>Recruitment, Neurophysiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korfage, J.A.M</creatorcontrib><creatorcontrib>Koolstra, J.H.</creatorcontrib><creatorcontrib>Langenbach, G.E.J.</creatorcontrib><creatorcontrib>van Eijden, T.M.G.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korfage, J.A.M</au><au>Koolstra, J.H.</au><au>Langenbach, G.E.J.</au><au>van Eijden, T.M.G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity</atitle><jtitle>Journal of dental research</jtitle><addtitle>J Dent Res</addtitle><date>2005-09</date><risdate>2005</risdate><volume>84</volume><issue>9</issue><spage>774</spage><epage>783</epage><pages>774-783</pages><issn>0022-0345</issn><eissn>1544-0591</eissn><coden>JDREAF</coden><abstract>This is the first of two articles on the fiber-type composition of the human jaw muscles. The present article discusses the origin of fiber-type composition and its consequences. This discussion is presented in the context of the requirements for functional performance and adaptation that are imposed upon the jaw muscles. The human masticatory system must perform a much larger variety of motor tasks than the average limb or trunk motor system. An important advantage of fiber-type diversity, as observed in the jaw muscles, is that it optimizes the required function while minimizing energy use. The capacity for adaptation is reflected by the large variability in fiber-type composition among muscle groups, individual muscles, and muscle regions. Adaptive changes are related, for example, to the amount of daily activation and/or stretch of fibers. Generally, the number of slow, fatigue-resistant fibers is relatively large in muscles and muscle regions that are subjected to considerable activity and/or stretch.</abstract><cop>United States</cop><pub>SAGE Publications</pub><pmid>16109984</pmid><doi>10.1177/154405910508400901</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0345
ispartof Journal of dental research, 2005-09, Vol.84 (9), p.774-783
issn 0022-0345
1544-0591
language eng
recordid cdi_proquest_miscellaneous_68500554
source MEDLINE; SAGE Journals
subjects Adaptation, Physiological
Animals
Dentistry
Humans
Masticatory Muscles - anatomy & histology
Masticatory Muscles - physiology
Motor Neurons - physiology
Muscle Contraction
Muscle Fibers, Skeletal - chemistry
Muscle Fibers, Skeletal - physiology
Myosin Heavy Chains - chemistry
Myosin Heavy Chains - genetics
Myosin Heavy Chains - physiology
Protein Isoforms
Recruitment, Neurophysiological
title Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A37%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber-type%20Composition%20of%20the%20Human%20Jaw%20Muscles%E2%80%94(Part%201)%20Origin%20and%20Functional%20Significance%20of%20Fiber-type%20Diversity&rft.jtitle=Journal%20of%20dental%20research&rft.au=Korfage,%20J.A.M&rft.date=2005-09&rft.volume=84&rft.issue=9&rft.spage=774&rft.epage=783&rft.pages=774-783&rft.issn=0022-0345&rft.eissn=1544-0591&rft.coden=JDREAF&rft_id=info:doi/10.1177/154405910508400901&rft_dat=%3Cproquest_cross%3E68500554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=209477104&rft_id=info:pmid/16109984&rft_sage_id=10.1177_154405910508400901&rfr_iscdi=true