Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?

Untreated paired helical filaments (PHFs) and pronase‐digested PHF‐core filaments were stereoscopically imaged with a freeze‐drying vertical platinum‐carbon replication preparation method for TEM. The untreated PHF have an average wide region (W) = 22.8 ± 2.4 nm, a narrow region (T) = 10.6 ± 1.7 nm,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2005-07, Vol.67 (3-4), p.196-209
Hauptverfasser: Ruben, George C., Novak, Michal, Edwards, Patricia C., Iqbal, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 3-4
container_start_page 196
container_title Microscopy research and technique
container_volume 67
creator Ruben, George C.
Novak, Michal
Edwards, Patricia C.
Iqbal, Khalid
description Untreated paired helical filaments (PHFs) and pronase‐digested PHF‐core filaments were stereoscopically imaged with a freeze‐drying vertical platinum‐carbon replication preparation method for TEM. The untreated PHF have an average wide region (W) = 22.8 ± 2.4 nm, a narrow region (T) = 10.6 ± 1.7 nm, and a helical turn period (L) = 78.6 ± 13.4. The surfaces of the untreated PHF's fuzzy coat appears disorganized. The widths of the pronase‐treated PHF‐core filaments were significantly reduced (Wd = 14.8 ± 1.2 nm, Td = 5.7 ± 1.0 nm, and Ld = 75.4 ± 17 nm). The surfaces of the untreated PHF contained ∼1.1 nm strands, the same size as tau monomer (∼1.0 nm). The pronase‐digested PHF cores mostly contained ∼1.6 ± 0.3 nm strands although strand diameters ranged from 0.6–2.5 nm. The strands sometimes appear to be wrapped around the filament axis; less often, they appear to be roughly parallel to the PHF axis, and otherwise appear to be randomly oriented. Images of pronase‐digested PHF core images are discussed in relation to the core's biochemical composition, its proposed beta structure, and structural subunit models. Images of the untreated and the pronase‐digested PHF support a helical ribbon morphology. Microsc. Res. Tech. 67:196–209, 2005. © 2005 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jemt.20198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68499810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68499810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3658-4b08ae1ef332466d3d10a3e6f029a76a2ec46eb2e621cc43c3402aa79ccf97943</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EomXhwgMgnxAgpdhx1om5oGq73VK1UKSF9mY5zmTjNokX2wG278Q74t0scONka-abf37Nj9BzSo4oIenbW-jCUUqoKB6gQ0pEnsSqeLj9T0UiKLk5QE-8vyWE0inNHqMDyilhQvBD9Ou4vW_AdODwWhkHFW6gNVq1uDat6qAPHr-6Ojv1r7EPQ2UiUG5wY1ZN4sDbdgjG9ng5v3yHrxsVsFY9_g4u7CSuQjLDDtZbwR0XoG3x4LEq7RBwaABbt1K9uR_btt7V1s72ykNSmRX4EDfG_VhbB--foke1aj08278T9OV0vpydJRefFh9mxxeJZnxaJFlJCgUUasbSjPOKVZQoBryOZ1E5VynojEOZAk-p1hnTLCOpUrnQuha5yNgEvRx1o5VvQzQhO-N1NK96sIOXvMiEKOINJ-jNCGpnvXdQy7UznXIbSYnchiO34chdOBF-sVcdyg6qf-g-jQjQEfhhWtj8R0qezy-Xf0STccbEU_38O6PcneQ5y6fy-uNCfl3cfD4_ISeSsN-cS6tf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68499810</pqid></control><display><type>article</type><title>Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ruben, George C. ; Novak, Michal ; Edwards, Patricia C. ; Iqbal, Khalid</creator><creatorcontrib>Ruben, George C. ; Novak, Michal ; Edwards, Patricia C. ; Iqbal, Khalid</creatorcontrib><description>Untreated paired helical filaments (PHFs) and pronase‐digested PHF‐core filaments were stereoscopically imaged with a freeze‐drying vertical platinum‐carbon replication preparation method for TEM. The untreated PHF have an average wide region (W) = 22.8 ± 2.4 nm, a narrow region (T) = 10.6 ± 1.7 nm, and a helical turn period (L) = 78.6 ± 13.4. The surfaces of the untreated PHF's fuzzy coat appears disorganized. The widths of the pronase‐treated PHF‐core filaments were significantly reduced (Wd = 14.8 ± 1.2 nm, Td = 5.7 ± 1.0 nm, and Ld = 75.4 ± 17 nm). The surfaces of the untreated PHF contained ∼1.1 nm strands, the same size as tau monomer (∼1.0 nm). The pronase‐digested PHF cores mostly contained ∼1.6 ± 0.3 nm strands although strand diameters ranged from 0.6–2.5 nm. The strands sometimes appear to be wrapped around the filament axis; less often, they appear to be roughly parallel to the PHF axis, and otherwise appear to be randomly oriented. Images of pronase‐digested PHF core images are discussed in relation to the core's biochemical composition, its proposed beta structure, and structural subunit models. Images of the untreated and the pronase‐digested PHF support a helical ribbon morphology. Microsc. Res. Tech. 67:196–209, 2005. © 2005 Wiley‐Liss, Inc.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.20198</identifier><identifier>PMID: 16103996</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Alzheimer Disease - pathology ; Alzheimer's core PHF subunit ; Alzheimer's disease ; Freeze Drying ; freeze-dried vertically Pt-C replicated PHF ; Humans ; Male ; Microscopy, Electron, Transmission ; Middle Aged ; neurofibrillary pathology ; Neurofibrillary Tangles - chemistry ; Neurofibrillary Tangles - ultrastructure ; Pronase - chemistry ; Replica Techniques</subject><ispartof>Microscopy research and technique, 2005-07, Vol.67 (3-4), p.196-209</ispartof><rights>Copyright © 2005 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3658-4b08ae1ef332466d3d10a3e6f029a76a2ec46eb2e621cc43c3402aa79ccf97943</citedby><cites>FETCH-LOGICAL-c3658-4b08ae1ef332466d3d10a3e6f029a76a2ec46eb2e621cc43c3402aa79ccf97943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.20198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.20198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16103996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruben, George C.</creatorcontrib><creatorcontrib>Novak, Michal</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Iqbal, Khalid</creatorcontrib><title>Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?</title><title>Microscopy research and technique</title><addtitle>Microsc. Res. Tech</addtitle><description>Untreated paired helical filaments (PHFs) and pronase‐digested PHF‐core filaments were stereoscopically imaged with a freeze‐drying vertical platinum‐carbon replication preparation method for TEM. The untreated PHF have an average wide region (W) = 22.8 ± 2.4 nm, a narrow region (T) = 10.6 ± 1.7 nm, and a helical turn period (L) = 78.6 ± 13.4. The surfaces of the untreated PHF's fuzzy coat appears disorganized. The widths of the pronase‐treated PHF‐core filaments were significantly reduced (Wd = 14.8 ± 1.2 nm, Td = 5.7 ± 1.0 nm, and Ld = 75.4 ± 17 nm). The surfaces of the untreated PHF contained ∼1.1 nm strands, the same size as tau monomer (∼1.0 nm). The pronase‐digested PHF cores mostly contained ∼1.6 ± 0.3 nm strands although strand diameters ranged from 0.6–2.5 nm. The strands sometimes appear to be wrapped around the filament axis; less often, they appear to be roughly parallel to the PHF axis, and otherwise appear to be randomly oriented. Images of pronase‐digested PHF core images are discussed in relation to the core's biochemical composition, its proposed beta structure, and structural subunit models. Images of the untreated and the pronase‐digested PHF support a helical ribbon morphology. Microsc. Res. Tech. 67:196–209, 2005. © 2005 Wiley‐Liss, Inc.</description><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's core PHF subunit</subject><subject>Alzheimer's disease</subject><subject>Freeze Drying</subject><subject>freeze-dried vertically Pt-C replicated PHF</subject><subject>Humans</subject><subject>Male</subject><subject>Microscopy, Electron, Transmission</subject><subject>Middle Aged</subject><subject>neurofibrillary pathology</subject><subject>Neurofibrillary Tangles - chemistry</subject><subject>Neurofibrillary Tangles - ultrastructure</subject><subject>Pronase - chemistry</subject><subject>Replica Techniques</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EomXhwgMgnxAgpdhx1om5oGq73VK1UKSF9mY5zmTjNokX2wG278Q74t0scONka-abf37Nj9BzSo4oIenbW-jCUUqoKB6gQ0pEnsSqeLj9T0UiKLk5QE-8vyWE0inNHqMDyilhQvBD9Ou4vW_AdODwWhkHFW6gNVq1uDat6qAPHr-6Ojv1r7EPQ2UiUG5wY1ZN4sDbdgjG9ng5v3yHrxsVsFY9_g4u7CSuQjLDDtZbwR0XoG3x4LEq7RBwaABbt1K9uR_btt7V1s72ykNSmRX4EDfG_VhbB--foke1aj08278T9OV0vpydJRefFh9mxxeJZnxaJFlJCgUUasbSjPOKVZQoBryOZ1E5VynojEOZAk-p1hnTLCOpUrnQuha5yNgEvRx1o5VvQzQhO-N1NK96sIOXvMiEKOINJ-jNCGpnvXdQy7UznXIbSYnchiO34chdOBF-sVcdyg6qf-g-jQjQEfhhWtj8R0qezy-Xf0STccbEU_38O6PcneQ5y6fy-uNCfl3cfD4_ISeSsN-cS6tf</recordid><startdate>200507</startdate><enddate>200507</enddate><creator>Ruben, George C.</creator><creator>Novak, Michal</creator><creator>Edwards, Patricia C.</creator><creator>Iqbal, Khalid</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200507</creationdate><title>Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?</title><author>Ruben, George C. ; Novak, Michal ; Edwards, Patricia C. ; Iqbal, Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3658-4b08ae1ef332466d3d10a3e6f029a76a2ec46eb2e621cc43c3402aa79ccf97943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's core PHF subunit</topic><topic>Alzheimer's disease</topic><topic>Freeze Drying</topic><topic>freeze-dried vertically Pt-C replicated PHF</topic><topic>Humans</topic><topic>Male</topic><topic>Microscopy, Electron, Transmission</topic><topic>Middle Aged</topic><topic>neurofibrillary pathology</topic><topic>Neurofibrillary Tangles - chemistry</topic><topic>Neurofibrillary Tangles - ultrastructure</topic><topic>Pronase - chemistry</topic><topic>Replica Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruben, George C.</creatorcontrib><creatorcontrib>Novak, Michal</creatorcontrib><creatorcontrib>Edwards, Patricia C.</creatorcontrib><creatorcontrib>Iqbal, Khalid</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruben, George C.</au><au>Novak, Michal</au><au>Edwards, Patricia C.</au><au>Iqbal, Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc. Res. Tech</addtitle><date>2005-07</date><risdate>2005</risdate><volume>67</volume><issue>3-4</issue><spage>196</spage><epage>209</epage><pages>196-209</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>Untreated paired helical filaments (PHFs) and pronase‐digested PHF‐core filaments were stereoscopically imaged with a freeze‐drying vertical platinum‐carbon replication preparation method for TEM. The untreated PHF have an average wide region (W) = 22.8 ± 2.4 nm, a narrow region (T) = 10.6 ± 1.7 nm, and a helical turn period (L) = 78.6 ± 13.4. The surfaces of the untreated PHF's fuzzy coat appears disorganized. The widths of the pronase‐treated PHF‐core filaments were significantly reduced (Wd = 14.8 ± 1.2 nm, Td = 5.7 ± 1.0 nm, and Ld = 75.4 ± 17 nm). The surfaces of the untreated PHF contained ∼1.1 nm strands, the same size as tau monomer (∼1.0 nm). The pronase‐digested PHF cores mostly contained ∼1.6 ± 0.3 nm strands although strand diameters ranged from 0.6–2.5 nm. The strands sometimes appear to be wrapped around the filament axis; less often, they appear to be roughly parallel to the PHF axis, and otherwise appear to be randomly oriented. Images of pronase‐digested PHF core images are discussed in relation to the core's biochemical composition, its proposed beta structure, and structural subunit models. Images of the untreated and the pronase‐digested PHF support a helical ribbon morphology. Microsc. Res. Tech. 67:196–209, 2005. © 2005 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>16103996</pmid><doi>10.1002/jemt.20198</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2005-07, Vol.67 (3-4), p.196-209
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_68499810
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alzheimer Disease - pathology
Alzheimer's core PHF subunit
Alzheimer's disease
Freeze Drying
freeze-dried vertically Pt-C replicated PHF
Humans
Male
Microscopy, Electron, Transmission
Middle Aged
neurofibrillary pathology
Neurofibrillary Tangles - chemistry
Neurofibrillary Tangles - ultrastructure
Pronase - chemistry
Replica Techniques
title Alzheimer paired helical filaments (PHFs) studied by high-resolution TEM: What can vertical Pt-C replication tell us about the organization of the pronase-digested PHF core?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alzheimer%20paired%20helical%20filaments%20(PHFs)%20studied%20by%20high-resolution%20TEM:%20What%20can%20vertical%20Pt-C%20replication%20tell%20us%20about%20the%20organization%20of%20the%20pronase-digested%20PHF%20core?&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Ruben,%20George%20C.&rft.date=2005-07&rft.volume=67&rft.issue=3-4&rft.spage=196&rft.epage=209&rft.pages=196-209&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.20198&rft_dat=%3Cproquest_cross%3E68499810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68499810&rft_id=info:pmid/16103996&rfr_iscdi=true