Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae

Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 2005-07, Vol.354, p.2-8
Hauptverfasser: Ferreira Júnior, José Ribamar, Spírek, Mário, Liu, Zhengchang, Butow, Ronald A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 2
container_title Gene
container_volume 354
creator Ferreira Júnior, José Ribamar
Spírek, Mário
Liu, Zhengchang
Butow, Ronald A.
description Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.
doi_str_mv 10.1016/j.gene.2005.03.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68482277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111905001496</els_id><sourcerecordid>17399324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</originalsourceid><addsrcrecordid>eNqFkctOwzAURC0EouXxAyyQV-wS_IhjR2KDEC8JhFS6txznpnVpk2C7Rf17ElqJHdzNlUZnZjGD0AUlKSU0v16kM2ggZYSIlPCUZOoAjamSRUIIV4doTLhUCaW0GKGTEBakPyHYMRpRUeRSFHKMqucmgjc2urbBJcQvgAZP4ox12DQVfv0ItMOuwXEO2MNsvTQ_ZFv_KJPpI-5MnH-Z7SC9G2vnxrerrYWALXjYuOAMnKGj2iwDnO__KZo-3E_vnpKXt8fnu9uXxHIlYiK4zFiubFbW3EDGqKjKUhLBucpZwZVUNFc1GF6KUtWZgDwnhLGKMGsykfFTdLWL7Xz7uYYQ9coFC8ulaaBdB52rTDEm5b8glbwoOBsS2Q60vg3BQ60771bGbzUlethAL_SwgR420ITrfoPedLlPX5crqH4t-9J74GYHQN_FxoHXwTpoLFTOg426at1f-d_TO5bv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17399324</pqid></control><display><type>article</type><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</creator><creatorcontrib>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</creatorcontrib><description>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2005.03.048</identifier><identifier>PMID: 15967597</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Blotting, Western ; Cell Division - drug effects ; Cell Division - genetics ; Cell Nucleus - metabolism ; Chromatography, Gel - methods ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation, Fungal ; Glutamates - pharmacology ; Immunoprecipitation ; Intracellular Signaling Peptides and Proteins ; Mitochondria - metabolism ; Mks1p ; Molecular Weight ; Mutation ; Protein Binding ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Retrograde regulation ; RTG pathway ; Rtg2p ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - genetics ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast</subject><ispartof>Gene, 2005-07, Vol.354, p.2-8</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</citedby><cites>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378111905001496$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15967597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira Júnior, José Ribamar</creatorcontrib><creatorcontrib>Spírek, Mário</creatorcontrib><creatorcontrib>Liu, Zhengchang</creatorcontrib><creatorcontrib>Butow, Ronald A.</creatorcontrib><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><title>Gene</title><addtitle>Gene</addtitle><description>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</description><subject>Blotting, Western</subject><subject>Cell Division - drug effects</subject><subject>Cell Division - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatography, Gel - methods</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Glutamates - pharmacology</subject><subject>Immunoprecipitation</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Mitochondria - metabolism</subject><subject>Mks1p</subject><subject>Molecular Weight</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Retrograde regulation</subject><subject>RTG pathway</subject><subject>Rtg2p</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAURC0EouXxAyyQV-wS_IhjR2KDEC8JhFS6txznpnVpk2C7Rf17ElqJHdzNlUZnZjGD0AUlKSU0v16kM2ggZYSIlPCUZOoAjamSRUIIV4doTLhUCaW0GKGTEBakPyHYMRpRUeRSFHKMqucmgjc2urbBJcQvgAZP4ox12DQVfv0ItMOuwXEO2MNsvTQ_ZFv_KJPpI-5MnH-Z7SC9G2vnxrerrYWALXjYuOAMnKGj2iwDnO__KZo-3E_vnpKXt8fnu9uXxHIlYiK4zFiubFbW3EDGqKjKUhLBucpZwZVUNFc1GF6KUtWZgDwnhLGKMGsykfFTdLWL7Xz7uYYQ9coFC8ulaaBdB52rTDEm5b8glbwoOBsS2Q60vg3BQ60771bGbzUlethAL_SwgR420ITrfoPedLlPX5crqH4t-9J74GYHQN_FxoHXwTpoLFTOg426at1f-d_TO5bv</recordid><startdate>20050718</startdate><enddate>20050718</enddate><creator>Ferreira Júnior, José Ribamar</creator><creator>Spírek, Mário</creator><creator>Liu, Zhengchang</creator><creator>Butow, Ronald A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050718</creationdate><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><author>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blotting, Western</topic><topic>Cell Division - drug effects</topic><topic>Cell Division - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatography, Gel - methods</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Glutamates - pharmacology</topic><topic>Immunoprecipitation</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Mitochondria - metabolism</topic><topic>Mks1p</topic><topic>Molecular Weight</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Retrograde regulation</topic><topic>RTG pathway</topic><topic>Rtg2p</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira Júnior, José Ribamar</creatorcontrib><creatorcontrib>Spírek, Mário</creatorcontrib><creatorcontrib>Liu, Zhengchang</creatorcontrib><creatorcontrib>Butow, Ronald A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira Júnior, José Ribamar</au><au>Spírek, Mário</au><au>Liu, Zhengchang</au><au>Butow, Ronald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2005-07-18</date><risdate>2005</risdate><volume>354</volume><spage>2</spage><epage>8</epage><pages>2-8</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15967597</pmid><doi>10.1016/j.gene.2005.03.048</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-1119
ispartof Gene, 2005-07, Vol.354, p.2-8
issn 0378-1119
1879-0038
language eng
recordid cdi_proquest_miscellaneous_68482277
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Blotting, Western
Cell Division - drug effects
Cell Division - genetics
Cell Nucleus - metabolism
Chromatography, Gel - methods
Electrophoresis, Polyacrylamide Gel
Gene Expression Regulation, Fungal
Glutamates - pharmacology
Immunoprecipitation
Intracellular Signaling Peptides and Proteins
Mitochondria - metabolism
Mks1p
Molecular Weight
Mutation
Protein Binding
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
Retrograde regulation
RTG pathway
Rtg2p
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction - genetics
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Yeast
title Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20Rtg2p%20and%20Mks1p%20in%20the%20regulation%20of%20the%20RTG%20pathway%20of%20Saccharomyces%20cerevisiae&rft.jtitle=Gene&rft.au=Ferreira%20J%C3%BAnior,%20Jos%C3%A9%20Ribamar&rft.date=2005-07-18&rft.volume=354&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2005.03.048&rft_dat=%3Cproquest_cross%3E17399324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17399324&rft_id=info:pmid/15967597&rft_els_id=S0378111905001496&rfr_iscdi=true