Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae
Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activa...
Gespeichert in:
Veröffentlicht in: | Gene 2005-07, Vol.354, p.2-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 2 |
container_title | Gene |
container_volume | 354 |
creator | Ferreira Júnior, José Ribamar Spírek, Mário Liu, Zhengchang Butow, Ronald A. |
description | Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway. |
doi_str_mv | 10.1016/j.gene.2005.03.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68482277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111905001496</els_id><sourcerecordid>17399324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</originalsourceid><addsrcrecordid>eNqFkctOwzAURC0EouXxAyyQV-wS_IhjR2KDEC8JhFS6txznpnVpk2C7Rf17ElqJHdzNlUZnZjGD0AUlKSU0v16kM2ggZYSIlPCUZOoAjamSRUIIV4doTLhUCaW0GKGTEBakPyHYMRpRUeRSFHKMqucmgjc2urbBJcQvgAZP4ox12DQVfv0ItMOuwXEO2MNsvTQ_ZFv_KJPpI-5MnH-Z7SC9G2vnxrerrYWALXjYuOAMnKGj2iwDnO__KZo-3E_vnpKXt8fnu9uXxHIlYiK4zFiubFbW3EDGqKjKUhLBucpZwZVUNFc1GF6KUtWZgDwnhLGKMGsykfFTdLWL7Xz7uYYQ9coFC8ulaaBdB52rTDEm5b8glbwoOBsS2Q60vg3BQ60771bGbzUlethAL_SwgR420ITrfoPedLlPX5crqH4t-9J74GYHQN_FxoHXwTpoLFTOg426at1f-d_TO5bv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17399324</pqid></control><display><type>article</type><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</creator><creatorcontrib>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</creatorcontrib><description>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/j.gene.2005.03.048</identifier><identifier>PMID: 15967597</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Blotting, Western ; Cell Division - drug effects ; Cell Division - genetics ; Cell Nucleus - metabolism ; Chromatography, Gel - methods ; Electrophoresis, Polyacrylamide Gel ; Gene Expression Regulation, Fungal ; Glutamates - pharmacology ; Immunoprecipitation ; Intracellular Signaling Peptides and Proteins ; Mitochondria - metabolism ; Mks1p ; Molecular Weight ; Mutation ; Protein Binding ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Retrograde regulation ; RTG pathway ; Rtg2p ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction - genetics ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast</subject><ispartof>Gene, 2005-07, Vol.354, p.2-8</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</citedby><cites>FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378111905001496$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15967597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira Júnior, José Ribamar</creatorcontrib><creatorcontrib>Spírek, Mário</creatorcontrib><creatorcontrib>Liu, Zhengchang</creatorcontrib><creatorcontrib>Butow, Ronald A.</creatorcontrib><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><title>Gene</title><addtitle>Gene</addtitle><description>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</description><subject>Blotting, Western</subject><subject>Cell Division - drug effects</subject><subject>Cell Division - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromatography, Gel - methods</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Glutamates - pharmacology</subject><subject>Immunoprecipitation</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>Mitochondria - metabolism</subject><subject>Mks1p</subject><subject>Molecular Weight</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Retrograde regulation</subject><subject>RTG pathway</subject><subject>Rtg2p</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction - genetics</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwzAURC0EouXxAyyQV-wS_IhjR2KDEC8JhFS6txznpnVpk2C7Rf17ElqJHdzNlUZnZjGD0AUlKSU0v16kM2ggZYSIlPCUZOoAjamSRUIIV4doTLhUCaW0GKGTEBakPyHYMRpRUeRSFHKMqucmgjc2urbBJcQvgAZP4ox12DQVfv0ItMOuwXEO2MNsvTQ_ZFv_KJPpI-5MnH-Z7SC9G2vnxrerrYWALXjYuOAMnKGj2iwDnO__KZo-3E_vnpKXt8fnu9uXxHIlYiK4zFiubFbW3EDGqKjKUhLBucpZwZVUNFc1GF6KUtWZgDwnhLGKMGsykfFTdLWL7Xz7uYYQ9coFC8ulaaBdB52rTDEm5b8glbwoOBsS2Q60vg3BQ60771bGbzUlethAL_SwgR420ITrfoPedLlPX5crqH4t-9J74GYHQN_FxoHXwTpoLFTOg426at1f-d_TO5bv</recordid><startdate>20050718</startdate><enddate>20050718</enddate><creator>Ferreira Júnior, José Ribamar</creator><creator>Spírek, Mário</creator><creator>Liu, Zhengchang</creator><creator>Butow, Ronald A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20050718</creationdate><title>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</title><author>Ferreira Júnior, José Ribamar ; Spírek, Mário ; Liu, Zhengchang ; Butow, Ronald A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-5374268c4bf3ae4215dbb7053386293878168fea3b5b8f45e660022d02ca4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blotting, Western</topic><topic>Cell Division - drug effects</topic><topic>Cell Division - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromatography, Gel - methods</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Glutamates - pharmacology</topic><topic>Immunoprecipitation</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>Mitochondria - metabolism</topic><topic>Mks1p</topic><topic>Molecular Weight</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Retrograde regulation</topic><topic>RTG pathway</topic><topic>Rtg2p</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction - genetics</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira Júnior, José Ribamar</creatorcontrib><creatorcontrib>Spírek, Mário</creatorcontrib><creatorcontrib>Liu, Zhengchang</creatorcontrib><creatorcontrib>Butow, Ronald A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira Júnior, José Ribamar</au><au>Spírek, Mário</au><au>Liu, Zhengchang</au><au>Butow, Ronald A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>2005-07-18</date><risdate>2005</risdate><volume>354</volume><spage>2</spage><epage>8</epage><pages>2-8</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix–loop–helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14–3–3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>15967597</pmid><doi>10.1016/j.gene.2005.03.048</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1119 |
ispartof | Gene, 2005-07, Vol.354, p.2-8 |
issn | 0378-1119 1879-0038 |
language | eng |
recordid | cdi_proquest_miscellaneous_68482277 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Blotting, Western Cell Division - drug effects Cell Division - genetics Cell Nucleus - metabolism Chromatography, Gel - methods Electrophoresis, Polyacrylamide Gel Gene Expression Regulation, Fungal Glutamates - pharmacology Immunoprecipitation Intracellular Signaling Peptides and Proteins Mitochondria - metabolism Mks1p Molecular Weight Mutation Protein Binding Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism Retrograde regulation RTG pathway Rtg2p Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction - genetics Transcription Factors - chemistry Transcription Factors - genetics Transcription Factors - metabolism Yeast |
title | Interaction between Rtg2p and Mks1p in the regulation of the RTG pathway of Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20Rtg2p%20and%20Mks1p%20in%20the%20regulation%20of%20the%20RTG%20pathway%20of%20Saccharomyces%20cerevisiae&rft.jtitle=Gene&rft.au=Ferreira%20J%C3%BAnior,%20Jos%C3%A9%20Ribamar&rft.date=2005-07-18&rft.volume=354&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/j.gene.2005.03.048&rft_dat=%3Cproquest_cross%3E17399324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17399324&rft_id=info:pmid/15967597&rft_els_id=S0378111905001496&rfr_iscdi=true |