Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts
Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alter...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2007-11, Vol.3 (11), p.1957-1963 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1963 |
---|---|
container_issue | 11 |
container_start_page | 1957 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 3 |
creator | Voevodin, Andrey A. Vaia, Richard A. Patton, Steven T. Diamanti, Steven Pender, Mark Yoonessi, Mitra Brubaker, Jennifer Hu, Jian-Jun Sanders, Jeffrey H. Phillips, Benjamin S. MacCuspie, Robert I. |
description | Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.
Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes. |
doi_str_mv | 10.1002/smll.200700500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68477034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30961325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujEUSvHs1O3oava7euRyWKGsQgGLw1pXs107FhO6L8945A0BunvsP3-9J8hJxT6FKA6MrPi6IbAQiAGOCAtGlCWZikkTzc3RRa5MT7DwBGIy6OSYsKmbAojdvkfqjLaqFdnZsCwynWNWbBeOmsNugDW7ngBQu98oEus-C2RPe-CiZOl36ee59XZdCrylqb2p-SI6sLj2fbt0Ne724nvftw8Nx_6F0PQsMSASE3xsQaeATSpJBJw6WIZpJBog1PMKNMzLi1qBFjJoAjyyAV1sjMajsTyDrkcuNduOprib5WzU8MFoUusVp6laRcCGB8L8hANnmiuAG7G9C4ynuHVi1cPtdupSiodWS1jqx2kZvBxda8nM0x-8O3VRtAboDvvMDVHp0aPw0G_-XhZpv7Gn92W-0-VSKYiNV02FdsNHp7nExvVJ_9Ag-ZmQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30961325</pqid></control><display><type>article</type><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</creator><creatorcontrib>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</creatorcontrib><description>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.
Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200700500</identifier><identifier>PMID: 17963285</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Crystallization - methods ; Electronics - instrumentation ; Energy Transfer ; gold ; Gold - chemistry ; Macromolecular Substances - chemistry ; Materials Testing ; Microelectrodes ; Molecular Conformation ; nanoparticles ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Particle Size ; platinum ; relays ; Wettability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2007-11, Vol.3 (11), p.1957-1963</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</citedby><cites>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200700500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200700500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17963285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Patton, Steven T.</creatorcontrib><creatorcontrib>Diamanti, Steven</creatorcontrib><creatorcontrib>Pender, Mark</creatorcontrib><creatorcontrib>Yoonessi, Mitra</creatorcontrib><creatorcontrib>Brubaker, Jennifer</creatorcontrib><creatorcontrib>Hu, Jian-Jun</creatorcontrib><creatorcontrib>Sanders, Jeffrey H.</creatorcontrib><creatorcontrib>Phillips, Benjamin S.</creatorcontrib><creatorcontrib>MacCuspie, Robert I.</creatorcontrib><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.
Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</description><subject>Crystallization - methods</subject><subject>Electronics - instrumentation</subject><subject>Energy Transfer</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Microelectrodes</subject><subject>Molecular Conformation</subject><subject>nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>platinum</subject><subject>relays</subject><subject>Wettability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFPwjAUhxujEUSvHs1O3oava7euRyWKGsQgGLw1pXs107FhO6L8945A0BunvsP3-9J8hJxT6FKA6MrPi6IbAQiAGOCAtGlCWZikkTzc3RRa5MT7DwBGIy6OSYsKmbAojdvkfqjLaqFdnZsCwynWNWbBeOmsNugDW7ngBQu98oEus-C2RPe-CiZOl36ee59XZdCrylqb2p-SI6sLj2fbt0Ne724nvftw8Nx_6F0PQsMSASE3xsQaeATSpJBJw6WIZpJBog1PMKNMzLi1qBFjJoAjyyAV1sjMajsTyDrkcuNduOprib5WzU8MFoUusVp6laRcCGB8L8hANnmiuAG7G9C4ynuHVi1cPtdupSiodWS1jqx2kZvBxda8nM0x-8O3VRtAboDvvMDVHp0aPw0G_-XhZpv7Gn92W-0-VSKYiNV02FdsNHp7nExvVJ_9Ag-ZmQY</recordid><startdate>20071105</startdate><enddate>20071105</enddate><creator>Voevodin, Andrey A.</creator><creator>Vaia, Richard A.</creator><creator>Patton, Steven T.</creator><creator>Diamanti, Steven</creator><creator>Pender, Mark</creator><creator>Yoonessi, Mitra</creator><creator>Brubaker, Jennifer</creator><creator>Hu, Jian-Jun</creator><creator>Sanders, Jeffrey H.</creator><creator>Phillips, Benjamin S.</creator><creator>MacCuspie, Robert I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071105</creationdate><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><author>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Crystallization - methods</topic><topic>Electronics - instrumentation</topic><topic>Energy Transfer</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Microelectrodes</topic><topic>Molecular Conformation</topic><topic>nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>platinum</topic><topic>relays</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Patton, Steven T.</creatorcontrib><creatorcontrib>Diamanti, Steven</creatorcontrib><creatorcontrib>Pender, Mark</creatorcontrib><creatorcontrib>Yoonessi, Mitra</creatorcontrib><creatorcontrib>Brubaker, Jennifer</creatorcontrib><creatorcontrib>Hu, Jian-Jun</creatorcontrib><creatorcontrib>Sanders, Jeffrey H.</creatorcontrib><creatorcontrib>Phillips, Benjamin S.</creatorcontrib><creatorcontrib>MacCuspie, Robert I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voevodin, Andrey A.</au><au>Vaia, Richard A.</au><au>Patton, Steven T.</au><au>Diamanti, Steven</au><au>Pender, Mark</au><au>Yoonessi, Mitra</au><au>Brubaker, Jennifer</au><au>Hu, Jian-Jun</au><au>Sanders, Jeffrey H.</au><au>Phillips, Benjamin S.</au><au>MacCuspie, Robert I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2007-11-05</date><risdate>2007</risdate><volume>3</volume><issue>11</issue><spage>1957</spage><epage>1963</epage><pages>1957-1963</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.
Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17963285</pmid><doi>10.1002/smll.200700500</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2007-11, Vol.3 (11), p.1957-1963 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_68477034 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Crystallization - methods Electronics - instrumentation Energy Transfer gold Gold - chemistry Macromolecular Substances - chemistry Materials Testing Microelectrodes Molecular Conformation nanoparticles Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Nanotechnology - methods Particle Size platinum relays Wettability |
title | Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-Wetted%20Surfaces%20for%20Relays%20and%20Energy%20Transmission%20Contacts&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Voevodin,%20Andrey%20A.&rft.date=2007-11-05&rft.volume=3&rft.issue=11&rft.spage=1957&rft.epage=1963&rft.pages=1957-1963&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200700500&rft_dat=%3Cproquest_cross%3E30961325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30961325&rft_id=info:pmid/17963285&rfr_iscdi=true |