Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts

Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2007-11, Vol.3 (11), p.1957-1963
Hauptverfasser: Voevodin, Andrey A., Vaia, Richard A., Patton, Steven T., Diamanti, Steven, Pender, Mark, Yoonessi, Mitra, Brubaker, Jennifer, Hu, Jian-Jun, Sanders, Jeffrey H., Phillips, Benjamin S., MacCuspie, Robert I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue 11
container_start_page 1957
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 3
creator Voevodin, Andrey A.
Vaia, Richard A.
Patton, Steven T.
Diamanti, Steven
Pender, Mark
Yoonessi, Mitra
Brubaker, Jennifer
Hu, Jian-Jun
Sanders, Jeffrey H.
Phillips, Benjamin S.
MacCuspie, Robert I.
description Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy. Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.
doi_str_mv 10.1002/smll.200700500
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68477034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30961325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujEUSvHs1O3oava7euRyWKGsQgGLw1pXs107FhO6L8945A0BunvsP3-9J8hJxT6FKA6MrPi6IbAQiAGOCAtGlCWZikkTzc3RRa5MT7DwBGIy6OSYsKmbAojdvkfqjLaqFdnZsCwynWNWbBeOmsNugDW7ngBQu98oEus-C2RPe-CiZOl36ee59XZdCrylqb2p-SI6sLj2fbt0Ne724nvftw8Nx_6F0PQsMSASE3xsQaeATSpJBJw6WIZpJBog1PMKNMzLi1qBFjJoAjyyAV1sjMajsTyDrkcuNduOprib5WzU8MFoUusVp6laRcCGB8L8hANnmiuAG7G9C4ynuHVi1cPtdupSiodWS1jqx2kZvBxda8nM0x-8O3VRtAboDvvMDVHp0aPw0G_-XhZpv7Gn92W-0-VSKYiNV02FdsNHp7nExvVJ_9Ag-ZmQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30961325</pqid></control><display><type>article</type><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</creator><creatorcontrib>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</creatorcontrib><description>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy. Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200700500</identifier><identifier>PMID: 17963285</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Crystallization - methods ; Electronics - instrumentation ; Energy Transfer ; gold ; Gold - chemistry ; Macromolecular Substances - chemistry ; Materials Testing ; Microelectrodes ; Molecular Conformation ; nanoparticles ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Particle Size ; platinum ; relays ; Wettability</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2007-11, Vol.3 (11), p.1957-1963</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</citedby><cites>FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200700500$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200700500$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17963285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Patton, Steven T.</creatorcontrib><creatorcontrib>Diamanti, Steven</creatorcontrib><creatorcontrib>Pender, Mark</creatorcontrib><creatorcontrib>Yoonessi, Mitra</creatorcontrib><creatorcontrib>Brubaker, Jennifer</creatorcontrib><creatorcontrib>Hu, Jian-Jun</creatorcontrib><creatorcontrib>Sanders, Jeffrey H.</creatorcontrib><creatorcontrib>Phillips, Benjamin S.</creatorcontrib><creatorcontrib>MacCuspie, Robert I.</creatorcontrib><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy. Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</description><subject>Crystallization - methods</subject><subject>Electronics - instrumentation</subject><subject>Energy Transfer</subject><subject>gold</subject><subject>Gold - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Microelectrodes</subject><subject>Molecular Conformation</subject><subject>nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>platinum</subject><subject>relays</subject><subject>Wettability</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFPwjAUhxujEUSvHs1O3oava7euRyWKGsQgGLw1pXs107FhO6L8945A0BunvsP3-9J8hJxT6FKA6MrPi6IbAQiAGOCAtGlCWZikkTzc3RRa5MT7DwBGIy6OSYsKmbAojdvkfqjLaqFdnZsCwynWNWbBeOmsNugDW7ngBQu98oEus-C2RPe-CiZOl36ee59XZdCrylqb2p-SI6sLj2fbt0Ne724nvftw8Nx_6F0PQsMSASE3xsQaeATSpJBJw6WIZpJBog1PMKNMzLi1qBFjJoAjyyAV1sjMajsTyDrkcuNduOprib5WzU8MFoUusVp6laRcCGB8L8hANnmiuAG7G9C4ynuHVi1cPtdupSiodWS1jqx2kZvBxda8nM0x-8O3VRtAboDvvMDVHp0aPw0G_-XhZpv7Gn92W-0-VSKYiNV02FdsNHp7nExvVJ_9Ag-ZmQY</recordid><startdate>20071105</startdate><enddate>20071105</enddate><creator>Voevodin, Andrey A.</creator><creator>Vaia, Richard A.</creator><creator>Patton, Steven T.</creator><creator>Diamanti, Steven</creator><creator>Pender, Mark</creator><creator>Yoonessi, Mitra</creator><creator>Brubaker, Jennifer</creator><creator>Hu, Jian-Jun</creator><creator>Sanders, Jeffrey H.</creator><creator>Phillips, Benjamin S.</creator><creator>MacCuspie, Robert I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071105</creationdate><title>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</title><author>Voevodin, Andrey A. ; Vaia, Richard A. ; Patton, Steven T. ; Diamanti, Steven ; Pender, Mark ; Yoonessi, Mitra ; Brubaker, Jennifer ; Hu, Jian-Jun ; Sanders, Jeffrey H. ; Phillips, Benjamin S. ; MacCuspie, Robert I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-4ccc5a04209c80d9c4972b9306ac46ed137b4ffeaee53704e3d087fc9dfafb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Crystallization - methods</topic><topic>Electronics - instrumentation</topic><topic>Energy Transfer</topic><topic>gold</topic><topic>Gold - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Microelectrodes</topic><topic>Molecular Conformation</topic><topic>nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>platinum</topic><topic>relays</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voevodin, Andrey A.</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><creatorcontrib>Patton, Steven T.</creatorcontrib><creatorcontrib>Diamanti, Steven</creatorcontrib><creatorcontrib>Pender, Mark</creatorcontrib><creatorcontrib>Yoonessi, Mitra</creatorcontrib><creatorcontrib>Brubaker, Jennifer</creatorcontrib><creatorcontrib>Hu, Jian-Jun</creatorcontrib><creatorcontrib>Sanders, Jeffrey H.</creatorcontrib><creatorcontrib>Phillips, Benjamin S.</creatorcontrib><creatorcontrib>MacCuspie, Robert I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voevodin, Andrey A.</au><au>Vaia, Richard A.</au><au>Patton, Steven T.</au><au>Diamanti, Steven</au><au>Pender, Mark</au><au>Yoonessi, Mitra</au><au>Brubaker, Jennifer</au><au>Hu, Jian-Jun</au><au>Sanders, Jeffrey H.</au><au>Phillips, Benjamin S.</au><au>MacCuspie, Robert I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2007-11-05</date><risdate>2007</risdate><volume>3</volume><issue>11</issue><spage>1957</spage><epage>1963</epage><pages>1957-1963</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Submonolayer coatings of noble‐metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single‐component materials consisting of a metal nanoparticle core (5–20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic‐liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact–retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy. Noble‐metal nanoparticle liquids (NPLs) consisting of 5–20‐nm Au or Pt nanoparticles (see image) with ionic molecular coronas extend the durability of relays by 10 to 100 times. These single‐component materials suppress common relay failure modes both in the low‐ and high‐current regimes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17963285</pmid><doi>10.1002/smll.200700500</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2007-11, Vol.3 (11), p.1957-1963
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_68477034
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Crystallization - methods
Electronics - instrumentation
Energy Transfer
gold
Gold - chemistry
Macromolecular Substances - chemistry
Materials Testing
Microelectrodes
Molecular Conformation
nanoparticles
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - instrumentation
Nanotechnology - methods
Particle Size
platinum
relays
Wettability
title Nanoparticle-Wetted Surfaces for Relays and Energy Transmission Contacts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle-Wetted%20Surfaces%20for%20Relays%20and%20Energy%20Transmission%20Contacts&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Voevodin,%20Andrey%20A.&rft.date=2007-11-05&rft.volume=3&rft.issue=11&rft.spage=1957&rft.epage=1963&rft.pages=1957-1963&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200700500&rft_dat=%3Cproquest_cross%3E30961325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30961325&rft_id=info:pmid/17963285&rfr_iscdi=true