Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides
The mechanism of high-transition-temperature (high- T c ) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order 1 , 2 , but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle 3...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2005-08, Vol.436 (7052), p.829-832 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 7052 |
container_start_page | 829 |
container_title | Nature (London) |
container_volume | 436 |
creator | Mclaughlin, A. C. Sher, F. Attfield, J. P. |
description | The mechanism of high-transition-temperature (high-
T
c
) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order
1
,
2
, but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle
3
. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides
4
,
5
that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins. |
doi_str_mv | 10.1038/nature03828 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68474723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185469345</galeid><sourcerecordid>A185469345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-ff6e7e95310b0377bfb068db4c786dc7287d032d8b6aa991d1af5323446d2dc53</originalsourceid><addsrcrecordid>eNqF0k-L1DAUAPAiiruunrxLERREu6ZNmqTHYfDPwrKCrngsafJSs7RJN0mX2ZvfwW_oJzHrDMyMjEgOCS-_90KSl2VPS3RaIszfWhFnD2lV8XvZcUkYLQjl7H52jFDFC8QxPcoehXCFEKpLRh5mRyVFDcGUHGfuAnoRzQ3kg4jRSMhhNQkbjLO59m7M43fIwzyBl86qWSZq4u2vHz-FjUaDT0T0FqIJYy69C8HdgM-Nzf2cMq2ZU9hNKT13K6MgPM4eaDEEeLKZT7Kv799dLj8W558-nC0X54WsOY2F1hQYNDUuUYcwY53uEOWqI5JxqiSrOFMIV4p3VIimKVUpdI0rTAhVlZI1PslerutO3l3PEGI7miBhGIQFN4eWcsIIq_B_YcVRTQm7q_j8L3jlZm_TJdoKkZox2jQJFWvUiwFaY7WLXsgeLHgxOAvapPCi5DWhDSY7Rfe8nMx1u4tOD6A0FIxGHqz6ai8hmQir2Is5hPbsy-d9-_rfdnH5bXlxUP_5aw-6nbwZhb9tS9TedWO7041JP9s82dyNoLZ2034JvNgAEaQYtBdWmrB1DFWIUZbcm7ULacv24Ldvf-jc3_OX91w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204577699</pqid></control><display><type>article</type><title>Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides</title><source>SpringerLink Journals</source><source>Nature</source><creator>Mclaughlin, A. C. ; Sher, F. ; Attfield, J. P.</creator><creatorcontrib>Mclaughlin, A. C. ; Sher, F. ; Attfield, J. P.</creatorcontrib><description>The mechanism of high-transition-temperature (high-
T
c
) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order
1
,
2
, but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle
3
. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides
4
,
5
that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature03828</identifier><identifier>PMID: 16094364</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Copper ; Crystal lattices ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; Low temperature ; Magnetic fields ; Magnetic properties ; Magnetism ; multidisciplinary ; Oxides ; Physics ; Properties of type I and type II superconductors ; Ruthenium ; Science ; Science (multidisciplinary) ; Superconductivity</subject><ispartof>Nature (London), 2005-08, Vol.436 (7052), p.829-832</ispartof><rights>Springer Nature Limited 2005</rights><rights>2005 INIST-CNRS</rights><rights>COPYRIGHT 2005 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 11, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-ff6e7e95310b0377bfb068db4c786dc7287d032d8b6aa991d1af5323446d2dc53</citedby><cites>FETCH-LOGICAL-c586t-ff6e7e95310b0377bfb068db4c786dc7287d032d8b6aa991d1af5323446d2dc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature03828$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature03828$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17020767$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16094364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mclaughlin, A. C.</creatorcontrib><creatorcontrib>Sher, F.</creatorcontrib><creatorcontrib>Attfield, J. P.</creatorcontrib><title>Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The mechanism of high-transition-temperature (high-
T
c
) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order
1
,
2
, but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle
3
. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides
4
,
5
that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Copper</subject><subject>Crystal lattices</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Oxides</subject><subject>Physics</subject><subject>Properties of type I and type II superconductors</subject><subject>Ruthenium</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0k-L1DAUAPAiiruunrxLERREu6ZNmqTHYfDPwrKCrngsafJSs7RJN0mX2ZvfwW_oJzHrDMyMjEgOCS-_90KSl2VPS3RaIszfWhFnD2lV8XvZcUkYLQjl7H52jFDFC8QxPcoehXCFEKpLRh5mRyVFDcGUHGfuAnoRzQ3kg4jRSMhhNQkbjLO59m7M43fIwzyBl86qWSZq4u2vHz-FjUaDT0T0FqIJYy69C8HdgM-Nzf2cMq2ZU9hNKT13K6MgPM4eaDEEeLKZT7Kv799dLj8W558-nC0X54WsOY2F1hQYNDUuUYcwY53uEOWqI5JxqiSrOFMIV4p3VIimKVUpdI0rTAhVlZI1PslerutO3l3PEGI7miBhGIQFN4eWcsIIq_B_YcVRTQm7q_j8L3jlZm_TJdoKkZox2jQJFWvUiwFaY7WLXsgeLHgxOAvapPCi5DWhDSY7Rfe8nMx1u4tOD6A0FIxGHqz6ai8hmQir2Is5hPbsy-d9-_rfdnH5bXlxUP_5aw-6nbwZhb9tS9TedWO7041JP9s82dyNoLZ2034JvNgAEaQYtBdWmrB1DFWIUZbcm7ULacv24Ldvf-jc3_OX91w</recordid><startdate>20050811</startdate><enddate>20050811</enddate><creator>Mclaughlin, A. C.</creator><creator>Sher, F.</creator><creator>Attfield, J. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7QQ</scope><scope>7U5</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050811</creationdate><title>Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides</title><author>Mclaughlin, A. C. ; Sher, F. ; Attfield, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-ff6e7e95310b0377bfb068db4c786dc7287d032d8b6aa991d1af5323446d2dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Copper</topic><topic>Crystal lattices</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Oxides</topic><topic>Physics</topic><topic>Properties of type I and type II superconductors</topic><topic>Ruthenium</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mclaughlin, A. C.</creatorcontrib><creatorcontrib>Sher, F.</creatorcontrib><creatorcontrib>Attfield, J. P.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mclaughlin, A. C.</au><au>Sher, F.</au><au>Attfield, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2005-08-11</date><risdate>2005</risdate><volume>436</volume><issue>7052</issue><spage>829</spage><epage>832</epage><pages>829-832</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The mechanism of high-transition-temperature (high-
T
c
) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order
1
,
2
, but the relationship between the two states in the intervening ‘pseudogap’ regime has become a central puzzle
3
. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides
4
,
5
that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16094364</pmid><doi>10.1038/nature03828</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2005-08, Vol.436 (7052), p.829-832 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_68474723 |
source | SpringerLink Journals; Nature |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Copper Crystal lattices Exact sciences and technology Humanities and Social Sciences letter Low temperature Magnetic fields Magnetic properties Magnetism multidisciplinary Oxides Physics Properties of type I and type II superconductors Ruthenium Science Science (multidisciplinary) Superconductivity |
title | Negative lattice expansion from the superconductivity–antiferromagnetism crossover in ruthenium copper oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20lattice%20expansion%20from%20the%20superconductivity%E2%80%93antiferromagnetism%20crossover%20in%20ruthenium%20copper%20oxides&rft.jtitle=Nature%20(London)&rft.au=Mclaughlin,%20A.%20C.&rft.date=2005-08-11&rft.volume=436&rft.issue=7052&rft.spage=829&rft.epage=832&rft.pages=829-832&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature03828&rft_dat=%3Cgale_proqu%3EA185469345%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204577699&rft_id=info:pmid/16094364&rft_galeid=A185469345&rfr_iscdi=true |