q-Breathers and the Fermi-Pasta-Ulam problem
The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-08, Vol.95 (6), p.064102-064102, Article 064102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064102 |
---|---|
container_issue | 6 |
container_start_page | 064102 |
container_title | Physical review letters |
container_volume | 95 |
creator | Flach, S Ivanchenko, M V Kanakov, O I |
description | The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well. |
doi_str_mv | 10.1103/PhysRevLett.95.064102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68469077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68469077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMotlZ_gjIrV6beO5PHZKnFqlCwiF2HNLlDKzN9JNNC_70jLejqnMV5wMfYLcIQEYrH6eKQPmk_obYdGjkEJRDyM9ZH0IZrRHHO-gAFcgOge-wqpW8AwFyVl6yHCgwYqfvsYcufI7l2QTFlbhWyzmVjis2ST11qHZ_Vrsk2cT2vqblmF5WrE92cdMBm45ev0RuffLy-j54m3BfStFx6KqEISmtZGqwIpDfCSXTSYB5yJzyICmUIHtAY53KnKKA3XpASXubFgN0fd7vf7Y5Sa5tl8lTXbkXrXbKqFMqA1l1QHoM-rlOKVNlNXDYuHiyC_cVk_2GyRtojpq53dzrYzRsKf60Tl-IH445lBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68469077</pqid></control><display><type>article</type><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><source>American Physical Society Journals</source><creator>Flach, S ; Ivanchenko, M V ; Kanakov, O I</creator><creatorcontrib>Flach, S ; Ivanchenko, M V ; Kanakov, O I</creatorcontrib><description>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.95.064102</identifier><identifier>PMID: 16090957</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2005-08, Vol.95 (6), p.064102-064102, Article 064102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</citedby><cites>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16090957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flach, S</creatorcontrib><creatorcontrib>Ivanchenko, M V</creatorcontrib><creatorcontrib>Kanakov, O I</creatorcontrib><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMotlZ_gjIrV6beO5PHZKnFqlCwiF2HNLlDKzN9JNNC_70jLejqnMV5wMfYLcIQEYrH6eKQPmk_obYdGjkEJRDyM9ZH0IZrRHHO-gAFcgOge-wqpW8AwFyVl6yHCgwYqfvsYcufI7l2QTFlbhWyzmVjis2ST11qHZ_Vrsk2cT2vqblmF5WrE92cdMBm45ev0RuffLy-j54m3BfStFx6KqEISmtZGqwIpDfCSXTSYB5yJzyICmUIHtAY53KnKKA3XpASXubFgN0fd7vf7Y5Sa5tl8lTXbkXrXbKqFMqA1l1QHoM-rlOKVNlNXDYuHiyC_cVk_2GyRtojpq53dzrYzRsKf60Tl-IH445lBw</recordid><startdate>20050805</startdate><enddate>20050805</enddate><creator>Flach, S</creator><creator>Ivanchenko, M V</creator><creator>Kanakov, O I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050805</creationdate><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><author>Flach, S ; Ivanchenko, M V ; Kanakov, O I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flach, S</creatorcontrib><creatorcontrib>Ivanchenko, M V</creatorcontrib><creatorcontrib>Kanakov, O I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flach, S</au><au>Ivanchenko, M V</au><au>Kanakov, O I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>q-Breathers and the Fermi-Pasta-Ulam problem</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-08-05</date><risdate>2005</risdate><volume>95</volume><issue>6</issue><spage>064102</spage><epage>064102</epage><pages>064102-064102</pages><artnum>064102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</abstract><cop>United States</cop><pmid>16090957</pmid><doi>10.1103/PhysRevLett.95.064102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2005-08, Vol.95 (6), p.064102-064102, Article 064102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_68469077 |
source | American Physical Society Journals |
title | q-Breathers and the Fermi-Pasta-Ulam problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=q-Breathers%20and%20the%20Fermi-Pasta-Ulam%20problem&rft.jtitle=Physical%20review%20letters&rft.au=Flach,%20S&rft.date=2005-08-05&rft.volume=95&rft.issue=6&rft.spage=064102&rft.epage=064102&rft.pages=064102-064102&rft.artnum=064102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.95.064102&rft_dat=%3Cproquest_cross%3E68469077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68469077&rft_id=info:pmid/16090957&rfr_iscdi=true |