q-Breathers and the Fermi-Pasta-Ulam problem

The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-08, Vol.95 (6), p.064102-064102, Article 064102
Hauptverfasser: Flach, S, Ivanchenko, M V, Kanakov, O I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064102
container_issue 6
container_start_page 064102
container_title Physical review letters
container_volume 95
creator Flach, S
Ivanchenko, M V
Kanakov, O I
description The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.
doi_str_mv 10.1103/PhysRevLett.95.064102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68469077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68469077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMotlZ_gjIrV6beO5PHZKnFqlCwiF2HNLlDKzN9JNNC_70jLejqnMV5wMfYLcIQEYrH6eKQPmk_obYdGjkEJRDyM9ZH0IZrRHHO-gAFcgOge-wqpW8AwFyVl6yHCgwYqfvsYcufI7l2QTFlbhWyzmVjis2ST11qHZ_Vrsk2cT2vqblmF5WrE92cdMBm45ev0RuffLy-j54m3BfStFx6KqEISmtZGqwIpDfCSXTSYB5yJzyICmUIHtAY53KnKKA3XpASXubFgN0fd7vf7Y5Sa5tl8lTXbkXrXbKqFMqA1l1QHoM-rlOKVNlNXDYuHiyC_cVk_2GyRtojpq53dzrYzRsKf60Tl-IH445lBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68469077</pqid></control><display><type>article</type><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><source>American Physical Society Journals</source><creator>Flach, S ; Ivanchenko, M V ; Kanakov, O I</creator><creatorcontrib>Flach, S ; Ivanchenko, M V ; Kanakov, O I</creatorcontrib><description>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.95.064102</identifier><identifier>PMID: 16090957</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2005-08, Vol.95 (6), p.064102-064102, Article 064102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</citedby><cites>FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16090957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flach, S</creatorcontrib><creatorcontrib>Ivanchenko, M V</creatorcontrib><creatorcontrib>Kanakov, O I</creatorcontrib><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMotlZ_gjIrV6beO5PHZKnFqlCwiF2HNLlDKzN9JNNC_70jLejqnMV5wMfYLcIQEYrH6eKQPmk_obYdGjkEJRDyM9ZH0IZrRHHO-gAFcgOge-wqpW8AwFyVl6yHCgwYqfvsYcufI7l2QTFlbhWyzmVjis2ST11qHZ_Vrsk2cT2vqblmF5WrE92cdMBm45ev0RuffLy-j54m3BfStFx6KqEISmtZGqwIpDfCSXTSYB5yJzyICmUIHtAY53KnKKA3XpASXubFgN0fd7vf7Y5Sa5tl8lTXbkXrXbKqFMqA1l1QHoM-rlOKVNlNXDYuHiyC_cVk_2GyRtojpq53dzrYzRsKf60Tl-IH445lBw</recordid><startdate>20050805</startdate><enddate>20050805</enddate><creator>Flach, S</creator><creator>Ivanchenko, M V</creator><creator>Kanakov, O I</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050805</creationdate><title>q-Breathers and the Fermi-Pasta-Ulam problem</title><author>Flach, S ; Ivanchenko, M V ; Kanakov, O I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5ce803d6775891fe05c94a51a5912d2a4c04f15ddc0199aa2a6ed1c9c4e64c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flach, S</creatorcontrib><creatorcontrib>Ivanchenko, M V</creatorcontrib><creatorcontrib>Kanakov, O I</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flach, S</au><au>Ivanchenko, M V</au><au>Kanakov, O I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>q-Breathers and the Fermi-Pasta-Ulam problem</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2005-08-05</date><risdate>2005</risdate><volume>95</volume><issue>6</issue><spage>064102</spage><epage>064102</epage><pages>064102-064102</pages><artnum>064102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.</abstract><cop>United States</cop><pmid>16090957</pmid><doi>10.1103/PhysRevLett.95.064102</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2005-08, Vol.95 (6), p.064102-064102, Article 064102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_68469077
source American Physical Society Journals
title q-Breathers and the Fermi-Pasta-Ulam problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=q-Breathers%20and%20the%20Fermi-Pasta-Ulam%20problem&rft.jtitle=Physical%20review%20letters&rft.au=Flach,%20S&rft.date=2005-08-05&rft.volume=95&rft.issue=6&rft.spage=064102&rft.epage=064102&rft.pages=064102-064102&rft.artnum=064102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.95.064102&rft_dat=%3Cproquest_cross%3E68469077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68469077&rft_id=info:pmid/16090957&rfr_iscdi=true