Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race

Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-11, Vol.318 (5851), p.761-764
Hauptverfasser: Aravin, Alexei A, Hannon, Gregory J, Brennecke, Julius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 5851
container_start_page 761
container_title Science (American Association for the Advancement of Science)
container_volume 318
creator Aravin, Alexei A
Hannon, Gregory J
Brennecke, Julius
description Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.
doi_str_mv 10.1126/science.1146484
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68465117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20051496</jstor_id><sourcerecordid>20051496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-160fbf6b7886cfa064c2c3a5f71dd825f5f6edc896cf79b4b5af136a902b127c3</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgFrtWz57UINjb2DfJ5Ou41FaLRZfankMmk9gsu5MxmW3pf29kBwteegrD85s35HkRekPgEyFUnBQX_eB8_WhFq9pnaEFA80ZTYM_RAoCJRoHkh-hlKWuAmmn2Ah0SqSUHrhfo2yrex2aMV9-XeGWn23v7gFc53cXeF2wHvOztOMU7jz_74IficRzwdOvxdbZDGVNJleRtwVfW-VfoINhN8a_n8wjdnJ9dn35tLn98uThdXjaOUz41REDoguikUsIFC6J11DHLgyR9rygPPAjfO6VrKnXXdtwGwoTVQDtCpWNH6Hg_d8zp986XyWxjcX6zsYNPu2KEagUnRD4JKSitWqor_PAfXKddHuojDK1XA6ttVXSyRy6nUrIPZsxxa_ODIWD-bsPM2zDzNuof7-axu27r-0c_11_BxxnY4uwm1FJdLI9OU6KJpNW93bt1mVL-l1MATlotav5-nwebjP2V64ybnxQIA1CU1YbZHxP0pNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213603750</pqid></control><display><type>article</type><title>Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><source>JSTOR</source><creator>Aravin, Alexei A ; Hannon, Gregory J ; Brennecke, Julius</creator><creatorcontrib>Aravin, Alexei A ; Hannon, Gregory J ; Brennecke, Julius</creatorcontrib><description>Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1146484</identifier><identifier>PMID: 17975059</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; Biological and medical sciences ; DNA Transposable Elements ; Drosophila ; Drosophila Proteins ; Evolution, Molecular ; Evolutionary biology ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Silencing ; Genetic loci ; Genic rearrangement. Recombination. Transposable element ; Genomes ; Genomics ; Germ cells ; Mammals ; MicroRNA ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Pachytene stage ; Proteins ; Proteins - genetics ; Proteins - physiology ; Review ; Ribonucleic acid ; RNA ; RNA, Small Interfering ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - physiology ; RNA-Induced Silencing Complex ; Small interfering RNA ; Transposons</subject><ispartof>Science (American Association for the Advancement of Science), 2007-11, Vol.318 (5851), p.761-764</ispartof><rights>Copyright 2007 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2007, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-160fbf6b7886cfa064c2c3a5f71dd825f5f6edc896cf79b4b5af136a902b127c3</citedby><cites>FETCH-LOGICAL-c525t-160fbf6b7886cfa064c2c3a5f71dd825f5f6edc896cf79b4b5af136a902b127c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20051496$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20051496$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2882,2883,27922,27923,58015,58248</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19219172$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17975059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aravin, Alexei A</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><creatorcontrib>Brennecke, Julius</creatorcontrib><title>Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.</description><subject>Adaptation, Biological</subject><subject>Animals</subject><subject>Argonaute Proteins</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>DNA Transposable Elements</subject><subject>Drosophila</subject><subject>Drosophila Proteins</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Silencing</subject><subject>Genetic loci</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germ cells</subject><subject>Mammals</subject><subject>MicroRNA</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Pachytene stage</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - physiology</subject><subject>Review</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - physiology</subject><subject>RNA-Induced Silencing Complex</subject><subject>Small interfering RNA</subject><subject>Transposons</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1rFDEYBvAgFrtWz57UINjb2DfJ5Ou41FaLRZfankMmk9gsu5MxmW3pf29kBwteegrD85s35HkRekPgEyFUnBQX_eB8_WhFq9pnaEFA80ZTYM_RAoCJRoHkh-hlKWuAmmn2Ah0SqSUHrhfo2yrex2aMV9-XeGWn23v7gFc53cXeF2wHvOztOMU7jz_74IficRzwdOvxdbZDGVNJleRtwVfW-VfoINhN8a_n8wjdnJ9dn35tLn98uThdXjaOUz41REDoguikUsIFC6J11DHLgyR9rygPPAjfO6VrKnXXdtwGwoTVQDtCpWNH6Hg_d8zp986XyWxjcX6zsYNPu2KEagUnRD4JKSitWqor_PAfXKddHuojDK1XA6ttVXSyRy6nUrIPZsxxa_ODIWD-bsPM2zDzNuof7-axu27r-0c_11_BxxnY4uwm1FJdLI9OU6KJpNW93bt1mVL-l1MATlotav5-nwebjP2V64ybnxQIA1CU1YbZHxP0pNY</recordid><startdate>20071102</startdate><enddate>20071102</enddate><creator>Aravin, Alexei A</creator><creator>Hannon, Gregory J</creator><creator>Brennecke, Julius</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071102</creationdate><title>Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race</title><author>Aravin, Alexei A ; Hannon, Gregory J ; Brennecke, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-160fbf6b7886cfa064c2c3a5f71dd825f5f6edc896cf79b4b5af136a902b127c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptation, Biological</topic><topic>Animals</topic><topic>Argonaute Proteins</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>DNA Transposable Elements</topic><topic>Drosophila</topic><topic>Drosophila Proteins</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Silencing</topic><topic>Genetic loci</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germ cells</topic><topic>Mammals</topic><topic>MicroRNA</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Pachytene stage</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - physiology</topic><topic>Review</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - physiology</topic><topic>RNA-Induced Silencing Complex</topic><topic>Small interfering RNA</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aravin, Alexei A</creatorcontrib><creatorcontrib>Hannon, Gregory J</creatorcontrib><creatorcontrib>Brennecke, Julius</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aravin, Alexei A</au><au>Hannon, Gregory J</au><au>Brennecke, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2007-11-02</date><risdate>2007</risdate><volume>318</volume><issue>5851</issue><spage>761</spage><epage>764</epage><pages>761-764</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17975059</pmid><doi>10.1126/science.1146484</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2007-11, Vol.318 (5851), p.761-764
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_68465117
source MEDLINE; American Association for the Advancement of Science; JSTOR
subjects Adaptation, Biological
Animals
Argonaute Proteins
Base Sequence
Biological and medical sciences
DNA Transposable Elements
Drosophila
Drosophila Proteins
Evolution, Molecular
Evolutionary biology
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Silencing
Genetic loci
Genic rearrangement. Recombination. Transposable element
Genomes
Genomics
Germ cells
Mammals
MicroRNA
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
Pachytene stage
Proteins
Proteins - genetics
Proteins - physiology
Review
Ribonucleic acid
RNA
RNA, Small Interfering
RNA-Binding Proteins - genetics
RNA-Binding Proteins - physiology
RNA-Induced Silencing Complex
Small interfering RNA
Transposons
title Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piwi-piRNA%20Pathway%20Provides%20an%20Adaptive%20Defense%20in%20the%20Transposon%20Arms%20Race&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Aravin,%20Alexei%20A&rft.date=2007-11-02&rft.volume=318&rft.issue=5851&rft.spage=761&rft.epage=764&rft.pages=761-764&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1146484&rft_dat=%3Cjstor_proqu%3E20051496%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213603750&rft_id=info:pmid/17975059&rft_jstor_id=20051496&rfr_iscdi=true