Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene

Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2005-08, Vol.57 (4), p.988-1007
Hauptverfasser: Anyanful, Akwasi, Dolan‐Livengood, Jennifer M., Lewis, Taiesha, Sheth, Seema, DeZalia, Mark N., Sherman, Melanie A., Kalman, Lisa V., Benian, Guy M., Kalman, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1007
container_issue 4
container_start_page 988
container_title Molecular microbiology
container_volume 57
creator Anyanful, Akwasi
Dolan‐Livengood, Jennifer M.
Lewis, Taiesha
Sheth, Seema
DeZalia, Mark N.
Sherman, Melanie A.
Kalman, Lisa V.
Benian, Guy M.
Kalman, Daniel
description Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.
doi_str_mv 10.1111/j.1365-2958.2005.04739.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68464427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68464427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEotvCX0AWEtwS_BU7PnBAq1IqtYIDSNysiXey8eJNtnaiNhd-Owm7ohIXmItHmucdjfVkGWG0YHO92xVMqDLnpqwKTmlZUKmFKR6eZKs_g6fZipqS5qLi38-y85R2lDJBlXienTFFDaPCrLKfXyBCmJJPBLoN-eFD8N2W9A1ZA3Z9bKHe-GGeYsAtdInUE8FuwNgfYGj7LXbekcvkWozetR6I64MnEe9GHzGRoUVSg5t5D4EMcToM_aGFDhKSOYsvsmcNhIQvT-9F9u3j5df1p_zm89X1-sNN7krNTG4EOEG5NhJL1TSlRka5NLXUNXfAVFOXSosGjJSATSUMFdw5bTZa6rKmRlxkb497D7G_GzENdu-TwxCgw35MVlVSScn1P0GmleRcqxl8_Re468fYzZ-wzKiSVYyJGaqOkIt9ShEbe4h-D3GyjNrFpN3ZRZhdhNnFpP1t0j7M0Ven_WO9x81j8KRuBt6cAEgOQhOhcz49cppyxvhyw_sjd-8DTv99gL29vV468QvXrLqz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196518113</pqid></control><display><type>article</type><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</creator><creatorcontrib>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</creatorcontrib><description>Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04739.x</identifier><identifier>PMID: 16091039</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Bacteria ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Bacteriology ; Biological and medical sciences ; Biological Transport ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - microbiology ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - pathogenicity ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetics ; Indoles - pharmacology ; Microbiology ; Miscellaneous ; Mutation ; Pathogens ; Phosphoproteins - genetics ; Promoter Regions, Genetic - drug effects ; Tryptophan - metabolism ; Tryptophan - pharmacology ; Tryptophanase - genetics ; Tryptophanase - metabolism ; Virulence</subject><ispartof>Molecular microbiology, 2005-08, Vol.57 (4), p.988-1007</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Aug 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</citedby><cites>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2005.04739.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2005.04739.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17021123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16091039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anyanful, Akwasi</creatorcontrib><creatorcontrib>Dolan‐Livengood, Jennifer M.</creatorcontrib><creatorcontrib>Lewis, Taiesha</creatorcontrib><creatorcontrib>Sheth, Seema</creatorcontrib><creatorcontrib>DeZalia, Mark N.</creatorcontrib><creatorcontrib>Sherman, Melanie A.</creatorcontrib><creatorcontrib>Kalman, Lisa V.</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Kalman, Daniel</creatorcontrib><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - microbiology</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Indoles - pharmacology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phosphoproteins - genetics</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Tryptophan - metabolism</subject><subject>Tryptophan - pharmacology</subject><subject>Tryptophanase - genetics</subject><subject>Tryptophanase - metabolism</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEotvCX0AWEtwS_BU7PnBAq1IqtYIDSNysiXey8eJNtnaiNhd-Owm7ohIXmItHmucdjfVkGWG0YHO92xVMqDLnpqwKTmlZUKmFKR6eZKs_g6fZipqS5qLi38-y85R2lDJBlXienTFFDaPCrLKfXyBCmJJPBLoN-eFD8N2W9A1ZA3Z9bKHe-GGeYsAtdInUE8FuwNgfYGj7LXbekcvkWozetR6I64MnEe9GHzGRoUVSg5t5D4EMcToM_aGFDhKSOYsvsmcNhIQvT-9F9u3j5df1p_zm89X1-sNN7krNTG4EOEG5NhJL1TSlRka5NLXUNXfAVFOXSosGjJSATSUMFdw5bTZa6rKmRlxkb497D7G_GzENdu-TwxCgw35MVlVSScn1P0GmleRcqxl8_Re468fYzZ-wzKiSVYyJGaqOkIt9ShEbe4h-D3GyjNrFpN3ZRZhdhNnFpP1t0j7M0Ven_WO9x81j8KRuBt6cAEgOQhOhcz49cppyxvhyw_sjd-8DTv99gL29vV468QvXrLqz</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Anyanful, Akwasi</creator><creator>Dolan‐Livengood, Jennifer M.</creator><creator>Lewis, Taiesha</creator><creator>Sheth, Seema</creator><creator>DeZalia, Mark N.</creator><creator>Sherman, Melanie A.</creator><creator>Kalman, Lisa V.</creator><creator>Benian, Guy M.</creator><creator>Kalman, Daniel</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><author>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - microbiology</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Indoles - pharmacology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phosphoproteins - genetics</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Tryptophan - metabolism</topic><topic>Tryptophan - pharmacology</topic><topic>Tryptophanase - genetics</topic><topic>Tryptophanase - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anyanful, Akwasi</creatorcontrib><creatorcontrib>Dolan‐Livengood, Jennifer M.</creatorcontrib><creatorcontrib>Lewis, Taiesha</creatorcontrib><creatorcontrib>Sheth, Seema</creatorcontrib><creatorcontrib>DeZalia, Mark N.</creatorcontrib><creatorcontrib>Sherman, Melanie A.</creatorcontrib><creatorcontrib>Kalman, Lisa V.</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Kalman, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anyanful, Akwasi</au><au>Dolan‐Livengood, Jennifer M.</au><au>Lewis, Taiesha</au><au>Sheth, Seema</au><au>DeZalia, Mark N.</au><au>Sherman, Melanie A.</au><au>Kalman, Lisa V.</au><au>Benian, Guy M.</au><au>Kalman, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2005-08</date><risdate>2005</risdate><volume>57</volume><issue>4</issue><spage>988</spage><epage>1007</epage><pages>988-1007</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16091039</pmid><doi>10.1111/j.1365-2958.2005.04739.x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2005-08, Vol.57 (4), p.988-1007
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_68464427
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Bacterial Toxins - genetics
Bacterial Toxins - metabolism
Bacteriology
Biological and medical sciences
Biological Transport
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans - microbiology
Enzymes
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - pathogenicity
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genetics
Indoles - pharmacology
Microbiology
Miscellaneous
Mutation
Pathogens
Phosphoproteins - genetics
Promoter Regions, Genetic - drug effects
Tryptophan - metabolism
Tryptophan - pharmacology
Tryptophanase - genetics
Tryptophanase - metabolism
Virulence
title Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paralysis%20and%20killing%20of%20Caenorhabditis%20elegans%20by%20enteropathogenic%20Escherichia%20coli%20requires%20the%20bacterial%20tryptophanase%20gene&rft.jtitle=Molecular%20microbiology&rft.au=Anyanful,%20Akwasi&rft.date=2005-08&rft.volume=57&rft.issue=4&rft.spage=988&rft.epage=1007&rft.pages=988-1007&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04739.x&rft_dat=%3Cproquest_cross%3E68464427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196518113&rft_id=info:pmid/16091039&rfr_iscdi=true