Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene
Summary Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2005-08, Vol.57 (4), p.988-1007 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1007 |
---|---|
container_issue | 4 |
container_start_page | 988 |
container_title | Molecular microbiology |
container_volume | 57 |
creator | Anyanful, Akwasi Dolan‐Livengood, Jennifer M. Lewis, Taiesha Sheth, Seema DeZalia, Mark N. Sherman, Melanie A. Kalman, Lisa V. Benian, Guy M. Kalman, Daniel |
description | Summary
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host. |
doi_str_mv | 10.1111/j.1365-2958.2005.04739.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68464427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68464427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEotvCX0AWEtwS_BU7PnBAq1IqtYIDSNysiXey8eJNtnaiNhd-Owm7ohIXmItHmucdjfVkGWG0YHO92xVMqDLnpqwKTmlZUKmFKR6eZKs_g6fZipqS5qLi38-y85R2lDJBlXienTFFDaPCrLKfXyBCmJJPBLoN-eFD8N2W9A1ZA3Z9bKHe-GGeYsAtdInUE8FuwNgfYGj7LXbekcvkWozetR6I64MnEe9GHzGRoUVSg5t5D4EMcToM_aGFDhKSOYsvsmcNhIQvT-9F9u3j5df1p_zm89X1-sNN7krNTG4EOEG5NhJL1TSlRka5NLXUNXfAVFOXSosGjJSATSUMFdw5bTZa6rKmRlxkb497D7G_GzENdu-TwxCgw35MVlVSScn1P0GmleRcqxl8_Re468fYzZ-wzKiSVYyJGaqOkIt9ShEbe4h-D3GyjNrFpN3ZRZhdhNnFpP1t0j7M0Ven_WO9x81j8KRuBt6cAEgOQhOhcz49cppyxvhyw_sjd-8DTv99gL29vV468QvXrLqz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196518113</pqid></control><display><type>article</type><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</creator><creatorcontrib>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</creatorcontrib><description>Summary
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2005.04739.x</identifier><identifier>PMID: 16091039</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Bacteria ; Bacterial Toxins - genetics ; Bacterial Toxins - metabolism ; Bacteriology ; Biological and medical sciences ; Biological Transport ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans - microbiology ; Enzymes ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - pathogenicity ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetics ; Indoles - pharmacology ; Microbiology ; Miscellaneous ; Mutation ; Pathogens ; Phosphoproteins - genetics ; Promoter Regions, Genetic - drug effects ; Tryptophan - metabolism ; Tryptophan - pharmacology ; Tryptophanase - genetics ; Tryptophanase - metabolism ; Virulence</subject><ispartof>Molecular microbiology, 2005-08, Vol.57 (4), p.988-1007</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Aug 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</citedby><cites>FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2005.04739.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2005.04739.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17021123$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16091039$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anyanful, Akwasi</creatorcontrib><creatorcontrib>Dolan‐Livengood, Jennifer M.</creatorcontrib><creatorcontrib>Lewis, Taiesha</creatorcontrib><creatorcontrib>Sheth, Seema</creatorcontrib><creatorcontrib>DeZalia, Mark N.</creatorcontrib><creatorcontrib>Sherman, Melanie A.</creatorcontrib><creatorcontrib>Kalman, Lisa V.</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Kalman, Daniel</creatorcontrib><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans - microbiology</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Indoles - pharmacology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mutation</subject><subject>Pathogens</subject><subject>Phosphoproteins - genetics</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Tryptophan - metabolism</subject><subject>Tryptophan - pharmacology</subject><subject>Tryptophanase - genetics</subject><subject>Tryptophanase - metabolism</subject><subject>Virulence</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEotvCX0AWEtwS_BU7PnBAq1IqtYIDSNysiXey8eJNtnaiNhd-Owm7ohIXmItHmucdjfVkGWG0YHO92xVMqDLnpqwKTmlZUKmFKR6eZKs_g6fZipqS5qLi38-y85R2lDJBlXienTFFDaPCrLKfXyBCmJJPBLoN-eFD8N2W9A1ZA3Z9bKHe-GGeYsAtdInUE8FuwNgfYGj7LXbekcvkWozetR6I64MnEe9GHzGRoUVSg5t5D4EMcToM_aGFDhKSOYsvsmcNhIQvT-9F9u3j5df1p_zm89X1-sNN7krNTG4EOEG5NhJL1TSlRka5NLXUNXfAVFOXSosGjJSATSUMFdw5bTZa6rKmRlxkb497D7G_GzENdu-TwxCgw35MVlVSScn1P0GmleRcqxl8_Re468fYzZ-wzKiSVYyJGaqOkIt9ShEbe4h-D3GyjNrFpN3ZRZhdhNnFpP1t0j7M0Ven_WO9x81j8KRuBt6cAEgOQhOhcz49cppyxvhyw_sjd-8DTv99gL29vV468QvXrLqz</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Anyanful, Akwasi</creator><creator>Dolan‐Livengood, Jennifer M.</creator><creator>Lewis, Taiesha</creator><creator>Sheth, Seema</creator><creator>DeZalia, Mark N.</creator><creator>Sherman, Melanie A.</creator><creator>Kalman, Lisa V.</creator><creator>Benian, Guy M.</creator><creator>Kalman, Daniel</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200508</creationdate><title>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</title><author>Anyanful, Akwasi ; Dolan‐Livengood, Jennifer M. ; Lewis, Taiesha ; Sheth, Seema ; DeZalia, Mark N. ; Sherman, Melanie A. ; Kalman, Lisa V. ; Benian, Guy M. ; Kalman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5719-93ac302794e56ff57e10249b47b2ca16fb5673fa944aef839032cc79d7475b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans - microbiology</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Indoles - pharmacology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mutation</topic><topic>Pathogens</topic><topic>Phosphoproteins - genetics</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Tryptophan - metabolism</topic><topic>Tryptophan - pharmacology</topic><topic>Tryptophanase - genetics</topic><topic>Tryptophanase - metabolism</topic><topic>Virulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anyanful, Akwasi</creatorcontrib><creatorcontrib>Dolan‐Livengood, Jennifer M.</creatorcontrib><creatorcontrib>Lewis, Taiesha</creatorcontrib><creatorcontrib>Sheth, Seema</creatorcontrib><creatorcontrib>DeZalia, Mark N.</creatorcontrib><creatorcontrib>Sherman, Melanie A.</creatorcontrib><creatorcontrib>Kalman, Lisa V.</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Kalman, Daniel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anyanful, Akwasi</au><au>Dolan‐Livengood, Jennifer M.</au><au>Lewis, Taiesha</au><au>Sheth, Seema</au><au>DeZalia, Mark N.</au><au>Sherman, Melanie A.</au><au>Kalman, Lisa V.</au><au>Benian, Guy M.</au><au>Kalman, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2005-08</date><risdate>2005</risdate><volume>57</volume><issue>4</issue><spage>988</spage><epage>1007</epage><pages>988-1007</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water‐borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non‐pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin‐filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif‐1 and egl‐9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek‐1, mek‐1, mev‐1, pgp‐1,3 and vhl‐1, rendered C. elegans more susceptible to EPEC effects when mutated, suggesting their involvement in protecting the worms. Moreover we have found that C. elegans genes controlling lifespan (daf‐2, age‐1 and daf‐16), also mediate susceptibility to EPEC. Together, these data suggest that this C. elegans/EPEC system will be valuable in elucidating novel factors relevant to human disease that regulate virulence in the pathogen or susceptibility to infection in the host.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>16091039</pmid><doi>10.1111/j.1365-2958.2005.04739.x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2005-08, Vol.57 (4), p.988-1007 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_68464427 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry |
subjects | Animals Bacteria Bacterial Toxins - genetics Bacterial Toxins - metabolism Bacteriology Biological and medical sciences Biological Transport Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans - microbiology Enzymes Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - pathogenicity Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fundamental and applied biological sciences. Psychology Genetics Indoles - pharmacology Microbiology Miscellaneous Mutation Pathogens Phosphoproteins - genetics Promoter Regions, Genetic - drug effects Tryptophan - metabolism Tryptophan - pharmacology Tryptophanase - genetics Tryptophanase - metabolism Virulence |
title | Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paralysis%20and%20killing%20of%20Caenorhabditis%20elegans%20by%20enteropathogenic%20Escherichia%20coli%20requires%20the%20bacterial%20tryptophanase%20gene&rft.jtitle=Molecular%20microbiology&rft.au=Anyanful,%20Akwasi&rft.date=2005-08&rft.volume=57&rft.issue=4&rft.spage=988&rft.epage=1007&rft.pages=988-1007&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2005.04739.x&rft_dat=%3Cproquest_cross%3E68464427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196518113&rft_id=info:pmid/16091039&rfr_iscdi=true |