Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes
Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the compo...
Gespeichert in:
Veröffentlicht in: | Microbiology (Society for General Microbiology) 2007-11, Vol.153 (11), p.3739-3747 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3747 |
---|---|
container_issue | 11 |
container_start_page | 3739 |
container_title | Microbiology (Society for General Microbiology) |
container_volume | 153 |
creator | Kern, Melanie Mager, Anke M Simon, Jorg |
description | Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de
Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.
Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase |
doi_str_mv | 10.1099/mic.0.2007/009928-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68457150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19979607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rr6CwTJRQ9Cz1aSziQ5yrB-wKIgiseQrk7vRnqSNulW_PcmzMAevSRV1FNvVfIS8pLBjoEx18eAO9hxAHUNNee6g0fkkvV72XHQ8LjGQkIHWvEL8qyUnwC1COwpuWDKKAmaX5L4Nc2epomGOIbfYdzcTKNb6J2PnuK8ldVnuuQ0briWCtHPbjl0FfaLr0dcaQxrdqun2Zcl1Cik2PR-pDlEP8-Olg0xxNQUy3PyZHJz8S_O9xX5_v7m2-Fjd_vlw6fDu9sO-75fO-Z77J2RKAyXmmsuJ45GuLEuLnDQA9uPxkil0DgxTBLNKHytaZAIWihxRd6cdOvqvzZfVnsMBds60aet2L3upWIS_gsyY5TZQ1MUJxBzKiX7yS45HF3-axnY5kdtRAu2-WFPftgm_-osvw1HPz70nA2owOsz4Aq6ecouYigPnBGKA2vj3564-3B3_ydkb-t_1ok5DSG10UwKy5itbzfiH4Iaoy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19979607</pqid></control><display><type>article</type><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><source>MEDLINE</source><source>PubMed Central</source><creator>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</creator><creatorcontrib>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</creatorcontrib><description>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de
Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.
Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</description><identifier>ISSN: 1350-0872</identifier><identifier>EISSN: 1465-2080</identifier><identifier>DOI: 10.1099/mic.0.2007/009928-0</identifier><identifier>PMID: 17975082</identifier><language>eng</language><publisher>Reading: Soc General Microbiol</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Culture Media ; Electron Transport ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Genetics ; Microbiology ; Multigene Family ; Mutation ; Nitrate Reductases - genetics ; Nitrate Reductases - metabolism ; Nitrates - metabolism ; Periplasm - enzymology ; Wolinella - enzymology ; Wolinella - genetics ; Wolinella - growth & development ; Wolinella succinogenes</subject><ispartof>Microbiology (Society for General Microbiology), 2007-11, Vol.153 (11), p.3739-3747</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</citedby><cites>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19372017$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17975082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, Melanie</creatorcontrib><creatorcontrib>Mager, Anke M</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><title>Microbiology (Society for General Microbiology)</title><addtitle>Microbiology</addtitle><description>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de
Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.
Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Culture Media</subject><subject>Electron Transport</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetics</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Nitrate Reductases - genetics</subject><subject>Nitrate Reductases - metabolism</subject><subject>Nitrates - metabolism</subject><subject>Periplasm - enzymology</subject><subject>Wolinella - enzymology</subject><subject>Wolinella - genetics</subject><subject>Wolinella - growth & development</subject><subject>Wolinella succinogenes</subject><issn>1350-0872</issn><issn>1465-2080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rr6CwTJRQ9Cz1aSziQ5yrB-wKIgiseQrk7vRnqSNulW_PcmzMAevSRV1FNvVfIS8pLBjoEx18eAO9hxAHUNNee6g0fkkvV72XHQ8LjGQkIHWvEL8qyUnwC1COwpuWDKKAmaX5L4Nc2epomGOIbfYdzcTKNb6J2PnuK8ldVnuuQ0briWCtHPbjl0FfaLr0dcaQxrdqun2Zcl1Cik2PR-pDlEP8-Olg0xxNQUy3PyZHJz8S_O9xX5_v7m2-Fjd_vlw6fDu9sO-75fO-Z77J2RKAyXmmsuJ45GuLEuLnDQA9uPxkil0DgxTBLNKHytaZAIWihxRd6cdOvqvzZfVnsMBds60aet2L3upWIS_gsyY5TZQ1MUJxBzKiX7yS45HF3-axnY5kdtRAu2-WFPftgm_-osvw1HPz70nA2owOsz4Aq6ecouYigPnBGKA2vj3564-3B3_ydkb-t_1ok5DSG10UwKy5itbzfiH4Iaoy4</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kern, Melanie</creator><creator>Mager, Anke M</creator><creator>Simon, Jorg</creator><general>Soc General Microbiol</general><general>Society for General Microbiology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><author>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Culture Media</topic><topic>Electron Transport</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetics</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Nitrate Reductases - genetics</topic><topic>Nitrate Reductases - metabolism</topic><topic>Nitrates - metabolism</topic><topic>Periplasm - enzymology</topic><topic>Wolinella - enzymology</topic><topic>Wolinella - genetics</topic><topic>Wolinella - growth & development</topic><topic>Wolinella succinogenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, Melanie</creatorcontrib><creatorcontrib>Mager, Anke M</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbiology (Society for General Microbiology)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, Melanie</au><au>Mager, Anke M</au><au>Simon, Jorg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</atitle><jtitle>Microbiology (Society for General Microbiology)</jtitle><addtitle>Microbiology</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>153</volume><issue>11</issue><spage>3739</spage><epage>3747</epage><pages>3739-3747</pages><issn>1350-0872</issn><eissn>1465-2080</eissn><abstract>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de
Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.
Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</abstract><cop>Reading</cop><pub>Soc General Microbiol</pub><pmid>17975082</pmid><doi>10.1099/mic.0.2007/009928-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-0872 |
ispartof | Microbiology (Society for General Microbiology), 2007-11, Vol.153 (11), p.3739-3747 |
issn | 1350-0872 1465-2080 |
language | eng |
recordid | cdi_proquest_miscellaneous_68457150 |
source | MEDLINE; PubMed Central |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences Culture Media Electron Transport Fundamental and applied biological sciences. Psychology Gene Deletion Gene Expression Regulation, Bacterial Genetics Microbiology Multigene Family Mutation Nitrate Reductases - genetics Nitrate Reductases - metabolism Nitrates - metabolism Periplasm - enzymology Wolinella - enzymology Wolinella - genetics Wolinella - growth & development Wolinella succinogenes |
title | Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20individual%20nap%20gene%20cluster%20products%20in%20NapC-independent%20nitrate%20respiration%20of%20Wolinella%20succinogenes&rft.jtitle=Microbiology%20(Society%20for%20General%20Microbiology)&rft.au=Kern,%20Melanie&rft.date=2007-11-01&rft.volume=153&rft.issue=11&rft.spage=3739&rft.epage=3747&rft.pages=3739-3747&rft.issn=1350-0872&rft.eissn=1465-2080&rft_id=info:doi/10.1099/mic.0.2007/009928-0&rft_dat=%3Cproquest_cross%3E19979607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19979607&rft_id=info:pmid/17975082&rfr_iscdi=true |