Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes

Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology (Society for General Microbiology) 2007-11, Vol.153 (11), p.3739-3747
Hauptverfasser: Kern, Melanie, Mager, Anke M, Simon, Jorg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3747
container_issue 11
container_start_page 3739
container_title Microbiology (Society for General Microbiology)
container_volume 153
creator Kern, Melanie
Mager, Anke M
Simon, Jorg
description Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA. Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase
doi_str_mv 10.1099/mic.0.2007/009928-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68457150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19979607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rr6CwTJRQ9Cz1aSziQ5yrB-wKIgiseQrk7vRnqSNulW_PcmzMAevSRV1FNvVfIS8pLBjoEx18eAO9hxAHUNNee6g0fkkvV72XHQ8LjGQkIHWvEL8qyUnwC1COwpuWDKKAmaX5L4Nc2epomGOIbfYdzcTKNb6J2PnuK8ldVnuuQ0briWCtHPbjl0FfaLr0dcaQxrdqun2Zcl1Cik2PR-pDlEP8-Olg0xxNQUy3PyZHJz8S_O9xX5_v7m2-Fjd_vlw6fDu9sO-75fO-Z77J2RKAyXmmsuJ45GuLEuLnDQA9uPxkil0DgxTBLNKHytaZAIWihxRd6cdOvqvzZfVnsMBds60aet2L3upWIS_gsyY5TZQ1MUJxBzKiX7yS45HF3-axnY5kdtRAu2-WFPftgm_-osvw1HPz70nA2owOsz4Aq6ecouYigPnBGKA2vj3564-3B3_ydkb-t_1ok5DSG10UwKy5itbzfiH4Iaoy4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19979607</pqid></control><display><type>article</type><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><source>MEDLINE</source><source>PubMed Central</source><creator>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</creator><creatorcontrib>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</creatorcontrib><description>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA. Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</description><identifier>ISSN: 1350-0872</identifier><identifier>EISSN: 1465-2080</identifier><identifier>DOI: 10.1099/mic.0.2007/009928-0</identifier><identifier>PMID: 17975082</identifier><language>eng</language><publisher>Reading: Soc General Microbiol</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Culture Media ; Electron Transport ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Expression Regulation, Bacterial ; Genetics ; Microbiology ; Multigene Family ; Mutation ; Nitrate Reductases - genetics ; Nitrate Reductases - metabolism ; Nitrates - metabolism ; Periplasm - enzymology ; Wolinella - enzymology ; Wolinella - genetics ; Wolinella - growth &amp; development ; Wolinella succinogenes</subject><ispartof>Microbiology (Society for General Microbiology), 2007-11, Vol.153 (11), p.3739-3747</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</citedby><cites>FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19372017$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17975082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, Melanie</creatorcontrib><creatorcontrib>Mager, Anke M</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><title>Microbiology (Society for General Microbiology)</title><addtitle>Microbiology</addtitle><description>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA. Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Culture Media</subject><subject>Electron Transport</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genetics</subject><subject>Microbiology</subject><subject>Multigene Family</subject><subject>Mutation</subject><subject>Nitrate Reductases - genetics</subject><subject>Nitrate Reductases - metabolism</subject><subject>Nitrates - metabolism</subject><subject>Periplasm - enzymology</subject><subject>Wolinella - enzymology</subject><subject>Wolinella - genetics</subject><subject>Wolinella - growth &amp; development</subject><subject>Wolinella succinogenes</subject><issn>1350-0872</issn><issn>1465-2080</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rr6CwTJRQ9Cz1aSziQ5yrB-wKIgiseQrk7vRnqSNulW_PcmzMAevSRV1FNvVfIS8pLBjoEx18eAO9hxAHUNNee6g0fkkvV72XHQ8LjGQkIHWvEL8qyUnwC1COwpuWDKKAmaX5L4Nc2epomGOIbfYdzcTKNb6J2PnuK8ldVnuuQ0briWCtHPbjl0FfaLr0dcaQxrdqun2Zcl1Cik2PR-pDlEP8-Olg0xxNQUy3PyZHJz8S_O9xX5_v7m2-Fjd_vlw6fDu9sO-75fO-Z77J2RKAyXmmsuJ45GuLEuLnDQA9uPxkil0DgxTBLNKHytaZAIWihxRd6cdOvqvzZfVnsMBds60aet2L3upWIS_gsyY5TZQ1MUJxBzKiX7yS45HF3-axnY5kdtRAu2-WFPftgm_-osvw1HPz70nA2owOsz4Aq6ecouYigPnBGKA2vj3564-3B3_ydkb-t_1ok5DSG10UwKy5itbzfiH4Iaoy4</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kern, Melanie</creator><creator>Mager, Anke M</creator><creator>Simon, Jorg</creator><general>Soc General Microbiol</general><general>Society for General Microbiology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</title><author>Kern, Melanie ; Mager, Anke M ; Simon, Jorg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-1e4c4a95c392582825f2c93ad1793cb8b16d99577c9a3bf5c9d3e179805c08373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Culture Media</topic><topic>Electron Transport</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genetics</topic><topic>Microbiology</topic><topic>Multigene Family</topic><topic>Mutation</topic><topic>Nitrate Reductases - genetics</topic><topic>Nitrate Reductases - metabolism</topic><topic>Nitrates - metabolism</topic><topic>Periplasm - enzymology</topic><topic>Wolinella - enzymology</topic><topic>Wolinella - genetics</topic><topic>Wolinella - growth &amp; development</topic><topic>Wolinella succinogenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, Melanie</creatorcontrib><creatorcontrib>Mager, Anke M</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbiology (Society for General Microbiology)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, Melanie</au><au>Mager, Anke M</au><au>Simon, Jorg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes</atitle><jtitle>Microbiology (Society for General Microbiology)</jtitle><addtitle>Microbiology</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>153</volume><issue>11</issue><spage>3739</spage><epage>3747</epage><pages>3739-3747</pages><issn>1350-0872</issn><eissn>1465-2080</eissn><abstract>Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany Correspondence Jörg Simon j.simon{at}bio.uni-frankfurt.de Bacterial nap gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, Wolinella succinogenes transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound c -type cytochrome of the NapC family. The role of individual ORFs of the W. succinogenes napAGHBFLD gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The napB and napD gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA. Abbreviations: BV, benzyl viologen; Tat, twin-arginine translocase</abstract><cop>Reading</cop><pub>Soc General Microbiol</pub><pmid>17975082</pmid><doi>10.1099/mic.0.2007/009928-0</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-0872
ispartof Microbiology (Society for General Microbiology), 2007-11, Vol.153 (11), p.3739-3747
issn 1350-0872
1465-2080
language eng
recordid cdi_proquest_miscellaneous_68457150
source MEDLINE; PubMed Central
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
Culture Media
Electron Transport
Fundamental and applied biological sciences. Psychology
Gene Deletion
Gene Expression Regulation, Bacterial
Genetics
Microbiology
Multigene Family
Mutation
Nitrate Reductases - genetics
Nitrate Reductases - metabolism
Nitrates - metabolism
Periplasm - enzymology
Wolinella - enzymology
Wolinella - genetics
Wolinella - growth & development
Wolinella succinogenes
title Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20individual%20nap%20gene%20cluster%20products%20in%20NapC-independent%20nitrate%20respiration%20of%20Wolinella%20succinogenes&rft.jtitle=Microbiology%20(Society%20for%20General%20Microbiology)&rft.au=Kern,%20Melanie&rft.date=2007-11-01&rft.volume=153&rft.issue=11&rft.spage=3739&rft.epage=3747&rft.pages=3739-3747&rft.issn=1350-0872&rft.eissn=1465-2080&rft_id=info:doi/10.1099/mic.0.2007/009928-0&rft_dat=%3Cproquest_cross%3E19979607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19979607&rft_id=info:pmid/17975082&rfr_iscdi=true