A refined ring polymer molecular dynamics theory of chemical reaction rates

We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by consideri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-07, Vol.123 (3), p.34102-34102
Hauptverfasser: Craig, Ian R, Manolopoulos, David E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34102
container_issue 3
container_start_page 34102
container_title The Journal of chemical physics
container_volume 123
creator Craig, Ian R
Manolopoulos, David E
description We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by considering the side functions of the ring-polymer centroids, rather than averaging over the side functions of the individual ring-polymer beads. This has two distinct advantages. First, the statistics of the phase-space average over the ring-polymer coordinates and momenta are greatly improved. Second, the resulting flux-side correlation function converges to its long-time limit much more rapidly. Indeed the short-time limit of this flux-side correlation function already provides a "quantum transition state theory" approximation to the final rate coefficient. In cases where transition state recrossing effects are negligible, and the transition state dividing surface is put in the right place, the RPMD rate is therefore obtained almost instantly. We then go on to show that the long-time limit of the new flux-side correlation function, and hence the fully converged RPMD reaction rate, is rigorously independent of the choice of the transition state dividing surface. This is especially significant because the optimum dividing surface can often be very difficult to determine for reactions in complex chemical systems.
doi_str_mv 10.1063/1.1954769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68447258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68447258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e1c88045dd1850eb61de492aa7657958479f313dd58d257ef59dd83963c050763</originalsourceid><addsrcrecordid>eNpFkE1Lw0AQhhdRbK0e_AOyJ8FD6mz2-1jELyx40XPY7k5sJB91Nznk3xtpwNMMwzMvvA8h1wzWDBS_Z2tmpdDKnpAlA2OzaYVTsgTIWWYVqAW5SOkbAJjOxTlZMAUGdC6X5G1DI5ZVi4HGqv2ih64eG4y06Wr0Q-0iDWPrmson2u-xiyPtSur3OF1cPb0631ddS6PrMV2Ss9LVCa_muSKfT48fDy_Z9v359WGzzTwXts-QeWNAyBCYkYA7xQIKmzunldRWGqFtyRkPQZqQS42ltCEYbhX3IEErviK3x9xD7H4GTH3RVMljXbsWuyEVyggxlTMTeHcEfexSmnoWh1g1Lo4Fg-LPXMGK2dzE3syhw67B8E_OqvgvrElnXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68447258</pqid></control><display><type>article</type><title>A refined ring polymer molecular dynamics theory of chemical reaction rates</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Craig, Ian R ; Manolopoulos, David E</creator><creatorcontrib>Craig, Ian R ; Manolopoulos, David E</creatorcontrib><description>We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by considering the side functions of the ring-polymer centroids, rather than averaging over the side functions of the individual ring-polymer beads. This has two distinct advantages. First, the statistics of the phase-space average over the ring-polymer coordinates and momenta are greatly improved. Second, the resulting flux-side correlation function converges to its long-time limit much more rapidly. Indeed the short-time limit of this flux-side correlation function already provides a "quantum transition state theory" approximation to the final rate coefficient. In cases where transition state recrossing effects are negligible, and the transition state dividing surface is put in the right place, the RPMD rate is therefore obtained almost instantly. We then go on to show that the long-time limit of the new flux-side correlation function, and hence the fully converged RPMD reaction rate, is rigorously independent of the choice of the transition state dividing surface. This is especially significant because the optimum dividing surface can often be very difficult to determine for reactions in complex chemical systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1954769</identifier><identifier>PMID: 16080725</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2005-07, Vol.123 (3), p.34102-34102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e1c88045dd1850eb61de492aa7657958479f313dd58d257ef59dd83963c050763</citedby><cites>FETCH-LOGICAL-c349t-e1c88045dd1850eb61de492aa7657958479f313dd58d257ef59dd83963c050763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16080725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Craig, Ian R</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><title>A refined ring polymer molecular dynamics theory of chemical reaction rates</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by considering the side functions of the ring-polymer centroids, rather than averaging over the side functions of the individual ring-polymer beads. This has two distinct advantages. First, the statistics of the phase-space average over the ring-polymer coordinates and momenta are greatly improved. Second, the resulting flux-side correlation function converges to its long-time limit much more rapidly. Indeed the short-time limit of this flux-side correlation function already provides a "quantum transition state theory" approximation to the final rate coefficient. In cases where transition state recrossing effects are negligible, and the transition state dividing surface is put in the right place, the RPMD rate is therefore obtained almost instantly. We then go on to show that the long-time limit of the new flux-side correlation function, and hence the fully converged RPMD reaction rate, is rigorously independent of the choice of the transition state dividing surface. This is especially significant because the optimum dividing surface can often be very difficult to determine for reactions in complex chemical systems.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AQhhdRbK0e_AOyJ8FD6mz2-1jELyx40XPY7k5sJB91Nznk3xtpwNMMwzMvvA8h1wzWDBS_Z2tmpdDKnpAlA2OzaYVTsgTIWWYVqAW5SOkbAJjOxTlZMAUGdC6X5G1DI5ZVi4HGqv2ih64eG4y06Wr0Q-0iDWPrmson2u-xiyPtSur3OF1cPb0631ddS6PrMV2Ss9LVCa_muSKfT48fDy_Z9v359WGzzTwXts-QeWNAyBCYkYA7xQIKmzunldRWGqFtyRkPQZqQS42ltCEYbhX3IEErviK3x9xD7H4GTH3RVMljXbsWuyEVyggxlTMTeHcEfexSmnoWh1g1Lo4Fg-LPXMGK2dzE3syhw67B8E_OqvgvrElnXQ</recordid><startdate>20050715</startdate><enddate>20050715</enddate><creator>Craig, Ian R</creator><creator>Manolopoulos, David E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050715</creationdate><title>A refined ring polymer molecular dynamics theory of chemical reaction rates</title><author>Craig, Ian R ; Manolopoulos, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e1c88045dd1850eb61de492aa7657958479f313dd58d257ef59dd83963c050763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Ian R</creatorcontrib><creatorcontrib>Manolopoulos, David E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Ian R</au><au>Manolopoulos, David E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A refined ring polymer molecular dynamics theory of chemical reaction rates</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2005-07-15</date><risdate>2005</risdate><volume>123</volume><issue>3</issue><spage>34102</spage><epage>34102</epage><pages>34102-34102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We further develop the ring polymer molecular dynamics (RPMD) method for calculating chemical reaction rates [I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 122, 084106 (2005)]. We begin by showing how the rate coefficient we obtained before can be calculated in a more efficient way by considering the side functions of the ring-polymer centroids, rather than averaging over the side functions of the individual ring-polymer beads. This has two distinct advantages. First, the statistics of the phase-space average over the ring-polymer coordinates and momenta are greatly improved. Second, the resulting flux-side correlation function converges to its long-time limit much more rapidly. Indeed the short-time limit of this flux-side correlation function already provides a "quantum transition state theory" approximation to the final rate coefficient. In cases where transition state recrossing effects are negligible, and the transition state dividing surface is put in the right place, the RPMD rate is therefore obtained almost instantly. We then go on to show that the long-time limit of the new flux-side correlation function, and hence the fully converged RPMD reaction rate, is rigorously independent of the choice of the transition state dividing surface. This is especially significant because the optimum dividing surface can often be very difficult to determine for reactions in complex chemical systems.</abstract><cop>United States</cop><pmid>16080725</pmid><doi>10.1063/1.1954769</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2005-07, Vol.123 (3), p.34102-34102
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_68447258
source AIP Journals Complete; AIP Digital Archive
title A refined ring polymer molecular dynamics theory of chemical reaction rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20refined%20ring%20polymer%20molecular%20dynamics%20theory%20of%20chemical%20reaction%20rates&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Craig,%20Ian%20R&rft.date=2005-07-15&rft.volume=123&rft.issue=3&rft.spage=34102&rft.epage=34102&rft.pages=34102-34102&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1954769&rft_dat=%3Cproquest_cross%3E68447258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68447258&rft_id=info:pmid/16080725&rfr_iscdi=true