Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16...
Gespeichert in:
Veröffentlicht in: | Journal of environmental quality 2007-11, Vol.36 (6), p.1920-1925 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1925 |
---|---|
container_issue | 6 |
container_start_page | 1920 |
container_title | Journal of environmental quality |
container_volume | 36 |
creator | Cheng, W Yagi, K Akiyama, H Nishimura, S Sudo, S Fumoto, T Hasegawa, T Hartley, A.E Megonigal, J.P |
description | To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**). |
doi_str_mv | 10.2134/jeq2007.0201 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68443690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1440959281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhxxoiFqyYcv0eL9FoeFStgJauLU9803qUjFM7EZp_j9OJhMSCLvw697tHtg8hrymcMcrFxx3eMwB9BgzoE7KgkuslK9NTsgAQZS-YPCEvct4BUAZaPScnVBsluZELEjZdH1KoXVtdRo9tFZvqOoa2Wt9h9yD_SLHHNATM1XDnhuoKb8fWDVhdYjnvcQL8WA8h7quwr85dX8SM1VWoS815f3gwzC_Js8a1GV_N6ym5-bz5tf66vPj-5dv608WylozTpaKecqQIsqlrv-XGGGc4Gi-AbbWqNTDvGd0qUMKj5yutOWwboynKxknkp-T90bdP8X7EPNgu5BrbtlwrjtmqlRBcGXgULL_KuZKPg1SsBCgpCvjuH3AXx7Qvr7XUaK614rRAH45QnWLOCRvbp9C5dLAU7JSonRO1U6IFfzN7jtsO_V94jrAA5gj8Di0e_mtmzzc_2TSKMJu_PfY2Llp3m0K2N9dTAWAlqaDA_wDkJbSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197377631</pqid></control><display><type>article</type><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</creator><creatorcontrib>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</creatorcontrib><description>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</description><identifier>ISSN: 0047-2425</identifier><identifier>ISSN: 1537-2537</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2007.0201</identifier><identifier>PMID: 17965395</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>anaerobic conditions ; Anaerobiosis ; biodegradation ; Carbon - chemistry ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Chemical properties ; Chemicals ; Crop production ; Emissions ; environmental models ; gas emissions ; Greenhouse gases ; iron ; Iron - chemistry ; Japan ; Methane ; Methane - metabolism ; methane production ; Methods ; Minerals - chemistry ; Minerals - metabolism ; Models, Biological ; nitrogen ; Nitrogen - chemistry ; Nitrogen - metabolism ; Organic matter ; Oryza - metabolism ; Oryza sativa ; paddy soils ; reduction ; rice ; Rice fields ; Sandy soils ; simulation models ; Soil - analysis ; soil chemical properties ; Soil Microbiology ; Soil organic matter ; Soil properties ; Soils ; Time Factors</subject><ispartof>Journal of environmental quality, 2007-11, Vol.36 (6), p.1920-1925</ispartof><rights>American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America</rights><rights>Copyright American Society of Agronomy Nov/Dec 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</citedby><cites>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2007.0201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2007.0201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17965395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, W</creatorcontrib><creatorcontrib>Yagi, K</creatorcontrib><creatorcontrib>Akiyama, H</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Sudo, S</creatorcontrib><creatorcontrib>Fumoto, T</creatorcontrib><creatorcontrib>Hasegawa, T</creatorcontrib><creatorcontrib>Hartley, A.E</creatorcontrib><creatorcontrib>Megonigal, J.P</creatorcontrib><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</description><subject>anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>biodegradation</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chemical properties</subject><subject>Chemicals</subject><subject>Crop production</subject><subject>Emissions</subject><subject>environmental models</subject><subject>gas emissions</subject><subject>Greenhouse gases</subject><subject>iron</subject><subject>Iron - chemistry</subject><subject>Japan</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>methane production</subject><subject>Methods</subject><subject>Minerals - chemistry</subject><subject>Minerals - metabolism</subject><subject>Models, Biological</subject><subject>nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - metabolism</subject><subject>Organic matter</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>paddy soils</subject><subject>reduction</subject><subject>rice</subject><subject>Rice fields</subject><subject>Sandy soils</subject><subject>simulation models</subject><subject>Soil - analysis</subject><subject>soil chemical properties</subject><subject>Soil Microbiology</subject><subject>Soil organic matter</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Time Factors</subject><issn>0047-2425</issn><issn>1537-2537</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhS0EokNhxxoiFqyYcv0eL9FoeFStgJauLU9803qUjFM7EZp_j9OJhMSCLvw697tHtg8hrymcMcrFxx3eMwB9BgzoE7KgkuslK9NTsgAQZS-YPCEvct4BUAZaPScnVBsluZELEjZdH1KoXVtdRo9tFZvqOoa2Wt9h9yD_SLHHNATM1XDnhuoKb8fWDVhdYjnvcQL8WA8h7quwr85dX8SM1VWoS815f3gwzC_Js8a1GV_N6ym5-bz5tf66vPj-5dv608WylozTpaKecqQIsqlrv-XGGGc4Gi-AbbWqNTDvGd0qUMKj5yutOWwboynKxknkp-T90bdP8X7EPNgu5BrbtlwrjtmqlRBcGXgULL_KuZKPg1SsBCgpCvjuH3AXx7Qvr7XUaK614rRAH45QnWLOCRvbp9C5dLAU7JSonRO1U6IFfzN7jtsO_V94jrAA5gj8Di0e_mtmzzc_2TSKMJu_PfY2Llp3m0K2N9dTAWAlqaDA_wDkJbSL</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Cheng, W</creator><creator>Yagi, K</creator><creator>Akiyama, H</creator><creator>Nishimura, S</creator><creator>Sudo, S</creator><creator>Fumoto, T</creator><creator>Hasegawa, T</creator><creator>Hartley, A.E</creator><creator>Megonigal, J.P</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>200711</creationdate><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><author>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>biodegradation</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chemical properties</topic><topic>Chemicals</topic><topic>Crop production</topic><topic>Emissions</topic><topic>environmental models</topic><topic>gas emissions</topic><topic>Greenhouse gases</topic><topic>iron</topic><topic>Iron - chemistry</topic><topic>Japan</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>methane production</topic><topic>Methods</topic><topic>Minerals - chemistry</topic><topic>Minerals - metabolism</topic><topic>Models, Biological</topic><topic>nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - metabolism</topic><topic>Organic matter</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>paddy soils</topic><topic>reduction</topic><topic>rice</topic><topic>Rice fields</topic><topic>Sandy soils</topic><topic>simulation models</topic><topic>Soil - analysis</topic><topic>soil chemical properties</topic><topic>Soil Microbiology</topic><topic>Soil organic matter</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, W</creatorcontrib><creatorcontrib>Yagi, K</creatorcontrib><creatorcontrib>Akiyama, H</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Sudo, S</creatorcontrib><creatorcontrib>Fumoto, T</creatorcontrib><creatorcontrib>Hasegawa, T</creatorcontrib><creatorcontrib>Hartley, A.E</creatorcontrib><creatorcontrib>Megonigal, J.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, W</au><au>Yagi, K</au><au>Akiyama, H</au><au>Nishimura, S</au><au>Sudo, S</au><au>Fumoto, T</au><au>Hasegawa, T</au><au>Hartley, A.E</au><au>Megonigal, J.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2007-11</date><risdate>2007</risdate><volume>36</volume><issue>6</issue><spage>1920</spage><epage>1925</epage><pages>1920-1925</pages><issn>0047-2425</issn><issn>1537-2537</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</abstract><cop>Madison</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>17965395</pmid><doi>10.2134/jeq2007.0201</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2425 |
ispartof | Journal of environmental quality, 2007-11, Vol.36 (6), p.1920-1925 |
issn | 0047-2425 1537-2537 1537-2537 |
language | eng |
recordid | cdi_proquest_miscellaneous_68443690 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | anaerobic conditions Anaerobiosis biodegradation Carbon - chemistry Carbon - metabolism Carbon dioxide Carbon Dioxide - metabolism Chemical properties Chemicals Crop production Emissions environmental models gas emissions Greenhouse gases iron Iron - chemistry Japan Methane Methane - metabolism methane production Methods Minerals - chemistry Minerals - metabolism Models, Biological nitrogen Nitrogen - chemistry Nitrogen - metabolism Organic matter Oryza - metabolism Oryza sativa paddy soils reduction rice Rice fields Sandy soils simulation models Soil - analysis soil chemical properties Soil Microbiology Soil organic matter Soil properties Soils Time Factors |
title | Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Model%20of%20Soil%20Chemical%20Properties%20that%20Regulate%20Methane%20Production%20in%20Japanese%20Rice%20Paddy%20Soils&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Cheng,%20W&rft.date=2007-11&rft.volume=36&rft.issue=6&rft.spage=1920&rft.epage=1925&rft.pages=1920-1925&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2007.0201&rft_dat=%3Cproquest_cross%3E1440959281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197377631&rft_id=info:pmid/17965395&rfr_iscdi=true |