Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils

To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 2007-11, Vol.36 (6), p.1920-1925
Hauptverfasser: Cheng, W, Yagi, K, Akiyama, H, Nishimura, S, Sudo, S, Fumoto, T, Hasegawa, T, Hartley, A.E, Megonigal, J.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1925
container_issue 6
container_start_page 1920
container_title Journal of environmental quality
container_volume 36
creator Cheng, W
Yagi, K
Akiyama, H
Nishimura, S
Sudo, S
Fumoto, T
Hasegawa, T
Hartley, A.E
Megonigal, J.P
description To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).
doi_str_mv 10.2134/jeq2007.0201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68443690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1440959281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhxxoiFqyYcv0eL9FoeFStgJauLU9803qUjFM7EZp_j9OJhMSCLvw697tHtg8hrymcMcrFxx3eMwB9BgzoE7KgkuslK9NTsgAQZS-YPCEvct4BUAZaPScnVBsluZELEjZdH1KoXVtdRo9tFZvqOoa2Wt9h9yD_SLHHNATM1XDnhuoKb8fWDVhdYjnvcQL8WA8h7quwr85dX8SM1VWoS815f3gwzC_Js8a1GV_N6ym5-bz5tf66vPj-5dv608WylozTpaKecqQIsqlrv-XGGGc4Gi-AbbWqNTDvGd0qUMKj5yutOWwboynKxknkp-T90bdP8X7EPNgu5BrbtlwrjtmqlRBcGXgULL_KuZKPg1SsBCgpCvjuH3AXx7Qvr7XUaK614rRAH45QnWLOCRvbp9C5dLAU7JSonRO1U6IFfzN7jtsO_V94jrAA5gj8Di0e_mtmzzc_2TSKMJu_PfY2Llp3m0K2N9dTAWAlqaDA_wDkJbSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197377631</pqid></control><display><type>article</type><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</creator><creatorcontrib>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</creatorcontrib><description>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</description><identifier>ISSN: 0047-2425</identifier><identifier>ISSN: 1537-2537</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2007.0201</identifier><identifier>PMID: 17965395</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>anaerobic conditions ; Anaerobiosis ; biodegradation ; Carbon - chemistry ; Carbon - metabolism ; Carbon dioxide ; Carbon Dioxide - metabolism ; Chemical properties ; Chemicals ; Crop production ; Emissions ; environmental models ; gas emissions ; Greenhouse gases ; iron ; Iron - chemistry ; Japan ; Methane ; Methane - metabolism ; methane production ; Methods ; Minerals - chemistry ; Minerals - metabolism ; Models, Biological ; nitrogen ; Nitrogen - chemistry ; Nitrogen - metabolism ; Organic matter ; Oryza - metabolism ; Oryza sativa ; paddy soils ; reduction ; rice ; Rice fields ; Sandy soils ; simulation models ; Soil - analysis ; soil chemical properties ; Soil Microbiology ; Soil organic matter ; Soil properties ; Soils ; Time Factors</subject><ispartof>Journal of environmental quality, 2007-11, Vol.36 (6), p.1920-1925</ispartof><rights>American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America</rights><rights>Copyright American Society of Agronomy Nov/Dec 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</citedby><cites>FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2007.0201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2007.0201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17965395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, W</creatorcontrib><creatorcontrib>Yagi, K</creatorcontrib><creatorcontrib>Akiyama, H</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Sudo, S</creatorcontrib><creatorcontrib>Fumoto, T</creatorcontrib><creatorcontrib>Hasegawa, T</creatorcontrib><creatorcontrib>Hartley, A.E</creatorcontrib><creatorcontrib>Megonigal, J.P</creatorcontrib><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</description><subject>anaerobic conditions</subject><subject>Anaerobiosis</subject><subject>biodegradation</subject><subject>Carbon - chemistry</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chemical properties</subject><subject>Chemicals</subject><subject>Crop production</subject><subject>Emissions</subject><subject>environmental models</subject><subject>gas emissions</subject><subject>Greenhouse gases</subject><subject>iron</subject><subject>Iron - chemistry</subject><subject>Japan</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>methane production</subject><subject>Methods</subject><subject>Minerals - chemistry</subject><subject>Minerals - metabolism</subject><subject>Models, Biological</subject><subject>nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - metabolism</subject><subject>Organic matter</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>paddy soils</subject><subject>reduction</subject><subject>rice</subject><subject>Rice fields</subject><subject>Sandy soils</subject><subject>simulation models</subject><subject>Soil - analysis</subject><subject>soil chemical properties</subject><subject>Soil Microbiology</subject><subject>Soil organic matter</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Time Factors</subject><issn>0047-2425</issn><issn>1537-2537</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhS0EokNhxxoiFqyYcv0eL9FoeFStgJauLU9803qUjFM7EZp_j9OJhMSCLvw697tHtg8hrymcMcrFxx3eMwB9BgzoE7KgkuslK9NTsgAQZS-YPCEvct4BUAZaPScnVBsluZELEjZdH1KoXVtdRo9tFZvqOoa2Wt9h9yD_SLHHNATM1XDnhuoKb8fWDVhdYjnvcQL8WA8h7quwr85dX8SM1VWoS815f3gwzC_Js8a1GV_N6ym5-bz5tf66vPj-5dv608WylozTpaKecqQIsqlrv-XGGGc4Gi-AbbWqNTDvGd0qUMKj5yutOWwboynKxknkp-T90bdP8X7EPNgu5BrbtlwrjtmqlRBcGXgULL_KuZKPg1SsBCgpCvjuH3AXx7Qvr7XUaK614rRAH45QnWLOCRvbp9C5dLAU7JSonRO1U6IFfzN7jtsO_V94jrAA5gj8Di0e_mtmzzc_2TSKMJu_PfY2Llp3m0K2N9dTAWAlqaDA_wDkJbSL</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Cheng, W</creator><creator>Yagi, K</creator><creator>Akiyama, H</creator><creator>Nishimura, S</creator><creator>Sudo, S</creator><creator>Fumoto, T</creator><creator>Hasegawa, T</creator><creator>Hartley, A.E</creator><creator>Megonigal, J.P</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope></search><sort><creationdate>200711</creationdate><title>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</title><author>Cheng, W ; Yagi, K ; Akiyama, H ; Nishimura, S ; Sudo, S ; Fumoto, T ; Hasegawa, T ; Hartley, A.E ; Megonigal, J.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5231-61d13e1e05fccdb3999a93e9d402b76c702dd21b6064ded387730bf971e5fa5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>anaerobic conditions</topic><topic>Anaerobiosis</topic><topic>biodegradation</topic><topic>Carbon - chemistry</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chemical properties</topic><topic>Chemicals</topic><topic>Crop production</topic><topic>Emissions</topic><topic>environmental models</topic><topic>gas emissions</topic><topic>Greenhouse gases</topic><topic>iron</topic><topic>Iron - chemistry</topic><topic>Japan</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>methane production</topic><topic>Methods</topic><topic>Minerals - chemistry</topic><topic>Minerals - metabolism</topic><topic>Models, Biological</topic><topic>nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - metabolism</topic><topic>Organic matter</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>paddy soils</topic><topic>reduction</topic><topic>rice</topic><topic>Rice fields</topic><topic>Sandy soils</topic><topic>simulation models</topic><topic>Soil - analysis</topic><topic>soil chemical properties</topic><topic>Soil Microbiology</topic><topic>Soil organic matter</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, W</creatorcontrib><creatorcontrib>Yagi, K</creatorcontrib><creatorcontrib>Akiyama, H</creatorcontrib><creatorcontrib>Nishimura, S</creatorcontrib><creatorcontrib>Sudo, S</creatorcontrib><creatorcontrib>Fumoto, T</creatorcontrib><creatorcontrib>Hasegawa, T</creatorcontrib><creatorcontrib>Hartley, A.E</creatorcontrib><creatorcontrib>Megonigal, J.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, W</au><au>Yagi, K</au><au>Akiyama, H</au><au>Nishimura, S</au><au>Sudo, S</au><au>Fumoto, T</au><au>Hasegawa, T</au><au>Hartley, A.E</au><au>Megonigal, J.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2007-11</date><risdate>2007</risdate><volume>36</volume><issue>6</issue><spage>1920</spage><epage>1925</epage><pages>1920-1925</pages><issn>0047-2425</issn><issn>1537-2537</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30°C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (Nava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH4 production (PCH4). There was a significant relationship between decomposable C and available N (Nava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fetotal) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: PCH4 = 1.593Nava- 2.460Fetotal/1000 (each unit was mg kg-1 soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).</abstract><cop>Madison</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>17965395</pmid><doi>10.2134/jeq2007.0201</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-2425
ispartof Journal of environmental quality, 2007-11, Vol.36 (6), p.1920-1925
issn 0047-2425
1537-2537
1537-2537
language eng
recordid cdi_proquest_miscellaneous_68443690
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects anaerobic conditions
Anaerobiosis
biodegradation
Carbon - chemistry
Carbon - metabolism
Carbon dioxide
Carbon Dioxide - metabolism
Chemical properties
Chemicals
Crop production
Emissions
environmental models
gas emissions
Greenhouse gases
iron
Iron - chemistry
Japan
Methane
Methane - metabolism
methane production
Methods
Minerals - chemistry
Minerals - metabolism
Models, Biological
nitrogen
Nitrogen - chemistry
Nitrogen - metabolism
Organic matter
Oryza - metabolism
Oryza sativa
paddy soils
reduction
rice
Rice fields
Sandy soils
simulation models
Soil - analysis
soil chemical properties
Soil Microbiology
Soil organic matter
Soil properties
Soils
Time Factors
title Empirical Model of Soil Chemical Properties that Regulate Methane Production in Japanese Rice Paddy Soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Model%20of%20Soil%20Chemical%20Properties%20that%20Regulate%20Methane%20Production%20in%20Japanese%20Rice%20Paddy%20Soils&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Cheng,%20W&rft.date=2007-11&rft.volume=36&rft.issue=6&rft.spage=1920&rft.epage=1925&rft.pages=1920-1925&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2007.0201&rft_dat=%3Cproquest_cross%3E1440959281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197377631&rft_id=info:pmid/17965395&rfr_iscdi=true