The Burden Borne by Urease

At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2005-08, Vol.127 (31), p.10828-10829
Hauptverfasser: Callahan, Brian P, Yuan, Yang, Wolfenden, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10829
container_issue 31
container_start_page 10828
container_title Journal of the American Chemical Society
container_volume 127
creator Callahan, Brian P
Yuan, Yang
Wolfenden, Richard
description At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.
doi_str_mv 10.1021/ja0525399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68439948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68439948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</originalsourceid><addsrcrecordid>eNpt0MFLwzAUBvAgipvTg1cP0ouCh2pemjTp0Q3dHBMFt3NI0wQ7u3YmK7j_3sjKdvH0CO_HR96H0CXge8AEHpYKM8KSLDtCfWAExwxIeoz6GGMSc5EmPXTm_TI8KRFwinqQYp4CF310Nf800bB1hamjYeNqE-XbaOGM8uYcnVhVeXPRzQFaPD_NR5N49jZ-GT3OYkVBbOI0wxYg44kiRZKLnGJhQWeYiSKjCQBOcsKoJTgzjDOGjc2Ba6p1DgRsbpMBut3lrl3z3Rq_kavSa1NVqjZN62UqaDiNigDvdlC7xntnrFy7cqXcVgKWf0XIfRHBXnehbb4yxUF2lwdw0wHltaqsU7Uu_cHxUJagPLh450q_MT_7vXJfMuUJZ3L-_iEn0_FrysRUkkOu0l4um9bVobt_PvgL4YN78Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68439948</pqid></control><display><type>article</type><title>The Burden Borne by Urease</title><source>MEDLINE</source><source>ACS Publications</source><creator>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</creator><creatorcontrib>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</creatorcontrib><description>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0525399</identifier><identifier>PMID: 16076178</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Catalysis ; Fundamental and applied biological sciences. Psychology ; Mechanisms. Catalysis. Electron transfer. Models ; Molecular biophysics ; Physical chemistry in biology ; Quantum Theory ; Urease - antagonists &amp; inhibitors ; Urease - metabolism</subject><ispartof>Journal of the American Chemical Society, 2005-08, Vol.127 (31), p.10828-10829</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</citedby><cites>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0525399$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0525399$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17004847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16076178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callahan, Brian P</creatorcontrib><creatorcontrib>Yuan, Yang</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><title>The Burden Borne by Urease</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</description><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mechanisms. Catalysis. Electron transfer. Models</subject><subject>Molecular biophysics</subject><subject>Physical chemistry in biology</subject><subject>Quantum Theory</subject><subject>Urease - antagonists &amp; inhibitors</subject><subject>Urease - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MFLwzAUBvAgipvTg1cP0ouCh2pemjTp0Q3dHBMFt3NI0wQ7u3YmK7j_3sjKdvH0CO_HR96H0CXge8AEHpYKM8KSLDtCfWAExwxIeoz6GGMSc5EmPXTm_TI8KRFwinqQYp4CF310Nf800bB1hamjYeNqE-XbaOGM8uYcnVhVeXPRzQFaPD_NR5N49jZ-GT3OYkVBbOI0wxYg44kiRZKLnGJhQWeYiSKjCQBOcsKoJTgzjDOGjc2Ba6p1DgRsbpMBut3lrl3z3Rq_kavSa1NVqjZN62UqaDiNigDvdlC7xntnrFy7cqXcVgKWf0XIfRHBXnehbb4yxUF2lwdw0wHltaqsU7Uu_cHxUJagPLh450q_MT_7vXJfMuUJZ3L-_iEn0_FrysRUkkOu0l4um9bVobt_PvgL4YN78Q</recordid><startdate>20050810</startdate><enddate>20050810</enddate><creator>Callahan, Brian P</creator><creator>Yuan, Yang</creator><creator>Wolfenden, Richard</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050810</creationdate><title>The Burden Borne by Urease</title><author>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mechanisms. Catalysis. Electron transfer. Models</topic><topic>Molecular biophysics</topic><topic>Physical chemistry in biology</topic><topic>Quantum Theory</topic><topic>Urease - antagonists &amp; inhibitors</topic><topic>Urease - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callahan, Brian P</creatorcontrib><creatorcontrib>Yuan, Yang</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callahan, Brian P</au><au>Yuan, Yang</au><au>Wolfenden, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Burden Borne by Urease</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-08-10</date><risdate>2005</risdate><volume>127</volume><issue>31</issue><spage>10828</spage><epage>10829</epage><pages>10828-10829</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16076178</pmid><doi>10.1021/ja0525399</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2005-08, Vol.127 (31), p.10828-10829
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_68439948
source MEDLINE; ACS Publications
subjects Biological and medical sciences
Catalysis
Fundamental and applied biological sciences. Psychology
Mechanisms. Catalysis. Electron transfer. Models
Molecular biophysics
Physical chemistry in biology
Quantum Theory
Urease - antagonists & inhibitors
Urease - metabolism
title The Burden Borne by Urease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Burden%20Borne%20by%20Urease&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Callahan,%20Brian%20P&rft.date=2005-08-10&rft.volume=127&rft.issue=31&rft.spage=10828&rft.epage=10829&rft.pages=10828-10829&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja0525399&rft_dat=%3Cproquest_cross%3E68439948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68439948&rft_id=info:pmid/16076178&rfr_iscdi=true