The Burden Borne by Urease
At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, c...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2005-08, Vol.127 (31), p.10828-10829 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10829 |
---|---|
container_issue | 31 |
container_start_page | 10828 |
container_title | Journal of the American Chemical Society |
container_volume | 127 |
creator | Callahan, Brian P Yuan, Yang Wolfenden, Richard |
description | At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds. |
doi_str_mv | 10.1021/ja0525399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68439948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68439948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</originalsourceid><addsrcrecordid>eNpt0MFLwzAUBvAgipvTg1cP0ouCh2pemjTp0Q3dHBMFt3NI0wQ7u3YmK7j_3sjKdvH0CO_HR96H0CXge8AEHpYKM8KSLDtCfWAExwxIeoz6GGMSc5EmPXTm_TI8KRFwinqQYp4CF310Nf800bB1hamjYeNqE-XbaOGM8uYcnVhVeXPRzQFaPD_NR5N49jZ-GT3OYkVBbOI0wxYg44kiRZKLnGJhQWeYiSKjCQBOcsKoJTgzjDOGjc2Ba6p1DgRsbpMBut3lrl3z3Rq_kavSa1NVqjZN62UqaDiNigDvdlC7xntnrFy7cqXcVgKWf0XIfRHBXnehbb4yxUF2lwdw0wHltaqsU7Uu_cHxUJagPLh450q_MT_7vXJfMuUJZ3L-_iEn0_FrysRUkkOu0l4um9bVobt_PvgL4YN78Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68439948</pqid></control><display><type>article</type><title>The Burden Borne by Urease</title><source>MEDLINE</source><source>ACS Publications</source><creator>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</creator><creatorcontrib>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</creatorcontrib><description>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0525399</identifier><identifier>PMID: 16076178</identifier><identifier>CODEN: JACSAT</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Catalysis ; Fundamental and applied biological sciences. Psychology ; Mechanisms. Catalysis. Electron transfer. Models ; Molecular biophysics ; Physical chemistry in biology ; Quantum Theory ; Urease - antagonists & inhibitors ; Urease - metabolism</subject><ispartof>Journal of the American Chemical Society, 2005-08, Vol.127 (31), p.10828-10829</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</citedby><cites>FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0525399$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0525399$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17004847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16076178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callahan, Brian P</creatorcontrib><creatorcontrib>Yuan, Yang</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><title>The Burden Borne by Urease</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</description><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mechanisms. Catalysis. Electron transfer. Models</subject><subject>Molecular biophysics</subject><subject>Physical chemistry in biology</subject><subject>Quantum Theory</subject><subject>Urease - antagonists & inhibitors</subject><subject>Urease - metabolism</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MFLwzAUBvAgipvTg1cP0ouCh2pemjTp0Q3dHBMFt3NI0wQ7u3YmK7j_3sjKdvH0CO_HR96H0CXge8AEHpYKM8KSLDtCfWAExwxIeoz6GGMSc5EmPXTm_TI8KRFwinqQYp4CF310Nf800bB1hamjYeNqE-XbaOGM8uYcnVhVeXPRzQFaPD_NR5N49jZ-GT3OYkVBbOI0wxYg44kiRZKLnGJhQWeYiSKjCQBOcsKoJTgzjDOGjc2Ba6p1DgRsbpMBut3lrl3z3Rq_kavSa1NVqjZN62UqaDiNigDvdlC7xntnrFy7cqXcVgKWf0XIfRHBXnehbb4yxUF2lwdw0wHltaqsU7Uu_cHxUJagPLh450q_MT_7vXJfMuUJZ3L-_iEn0_FrysRUkkOu0l4um9bVobt_PvgL4YN78Q</recordid><startdate>20050810</startdate><enddate>20050810</enddate><creator>Callahan, Brian P</creator><creator>Yuan, Yang</creator><creator>Wolfenden, Richard</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050810</creationdate><title>The Burden Borne by Urease</title><author>Callahan, Brian P ; Yuan, Yang ; Wolfenden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-690f11973a2d3b8b408f1c9058d9431103b254f209e57550efb17c4ccb121fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mechanisms. Catalysis. Electron transfer. Models</topic><topic>Molecular biophysics</topic><topic>Physical chemistry in biology</topic><topic>Quantum Theory</topic><topic>Urease - antagonists & inhibitors</topic><topic>Urease - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callahan, Brian P</creatorcontrib><creatorcontrib>Yuan, Yang</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callahan, Brian P</au><au>Yuan, Yang</au><au>Wolfenden, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Burden Borne by Urease</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2005-08-10</date><risdate>2005</risdate><volume>127</volume><issue>31</issue><spage>10828</spage><epage>10829</epage><pages>10828-10829</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><coden>JACSAT</coden><abstract>At the active site of urease, urea undergoes nucleophilic attack by water, whereas urea decomposes in solution by elimination of ammonia so that its rate of spontaneous hydrolysis is unknown. Quantum mechanical simulations have been interpreted as indicating that urea hydrolysis is extremely slow, compared with other biological reactions proceeding spontaneously, and that urease surpasses all other enzymes in its power to enhance the rate of a reaction. We tested that possibility experimentally by examining the hydrolysis of 1,1,3,3-tetramethylurea, from which elimination cannot occur. In neutral solution at 25 °C, the rate constant for the uncatalyzed hydrolysis of tetramethylurea is 4.2 × 10-12 s-1, which does not differ greatly from the rate constants observed for the uncatalyzed hydrolysis of acetamide (5.1 × 10-11 s-1) or N,N-dimethylacetamide (1.8 × 10-11 s-1) under the same conditions. We estimate that the proficiency of urease as a catalyst, (k cat/K m)/k non, is 8 × 1017 M-1, slightly higher than the values for other metalloenzymes (carboxypeptidase b and cytidine deaminase) that catalyze the hydrolysis of similar bonds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16076178</pmid><doi>10.1021/ja0525399</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2005-08, Vol.127 (31), p.10828-10829 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_68439948 |
source | MEDLINE; ACS Publications |
subjects | Biological and medical sciences Catalysis Fundamental and applied biological sciences. Psychology Mechanisms. Catalysis. Electron transfer. Models Molecular biophysics Physical chemistry in biology Quantum Theory Urease - antagonists & inhibitors Urease - metabolism |
title | The Burden Borne by Urease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Burden%20Borne%20by%20Urease&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Callahan,%20Brian%20P&rft.date=2005-08-10&rft.volume=127&rft.issue=31&rft.spage=10828&rft.epage=10829&rft.pages=10828-10829&rft.issn=0002-7863&rft.eissn=1520-5126&rft.coden=JACSAT&rft_id=info:doi/10.1021/ja0525399&rft_dat=%3Cproquest_cross%3E68439948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68439948&rft_id=info:pmid/16076178&rfr_iscdi=true |