Elicitors and priming agents initiate plant defense responses

Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2005-08, Vol.85 (2), p.149-159
Hauptverfasser: Pare, P.W, Farag, M.A, Krishnamachari, V, Zhang, H, Ryu, C.M, Kloepper, J.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 149
container_title Photosynthesis research
container_volume 85
creator Pare, P.W
Farag, M.A
Krishnamachari, V
Zhang, H
Ryu, C.M
Kloepper, J.W
description Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C(6) green-leaf volatiles and C(4) bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.
doi_str_mv 10.1007/s11120-005-1001-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68439772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68439772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-a9931ef4cbcf72f662ce32877e7ea530e2dd92e0b2694487868f144dfee865e23</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhoMoWj9-gBddPHhbnUmySfbgQaR-QMGD9hzS3UmJtLs12YL-e1NaELx4mhl4Zpj3fRk7R7hBAH2bEJFDCVCVecbya4-NsNKirEDX-2wEqFRpqro6YscpfQCAUSgO2REq0JVANWJ340VowtDHVLiuLVYxLEM3L9ycuiEVoQtDcAMVq4XrhqIlT12iIlJa9blJp-zAu0Wis109YdPH8fvDczl5fXp5uJ-UjZR6KF1dCyQvm1njNfdK8YYEN1qTJlcJIN62NSeYcVVLabRRxqOUrScyqiIuTtj19u4q9p9rSoNdhtTQIn9F_TpZZaSotf4f5KCy7Fpl8OoP-NGvY5dF2OyM2TinM4RbqIl9SpG83fjj4rdFsJsE7DYBmxPYzGi_8s7F7vB6tqT2d2NneQYut4B3vXXzGJKdvnFAAQhaIpfiB5mUiX4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753801667</pqid></control><display><type>article</type><title>Elicitors and priming agents initiate plant defense responses</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Pare, P.W ; Farag, M.A ; Krishnamachari, V ; Zhang, H ; Ryu, C.M ; Kloepper, J.W</creator><creatorcontrib>Pare, P.W ; Farag, M.A ; Krishnamachari, V ; Zhang, H ; Ryu, C.M ; Kloepper, J.W</creatorcontrib><description>Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C(6) green-leaf volatiles and C(4) bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-005-1001-x</identifier><identifier>PMID: 16075316</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>alpha-Linolenic Acid - analogs &amp; derivatives ; alpha-Linolenic Acid - chemistry ; alpha-Linolenic Acid - metabolism ; Animals ; Fatty Acids - metabolism ; Fatty Acids - pharmacology ; glutamine ; Glutamine - analogs &amp; derivatives ; Glutamine - chemistry ; Glutamine - metabolism ; linolenic acid ; literature reviews ; Pathogens ; pest resistance ; phytophagous insects ; Plant Diseases - microbiology ; plant-insect relations ; Plants - drug effects ; Plants - metabolism ; Plants - microbiology ; Signal Transduction ; volatile organic compounds ; Volatilization - drug effects ; volicitin</subject><ispartof>Photosynthesis research, 2005-08, Vol.85 (2), p.149-159</ispartof><rights>Springer 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-a9931ef4cbcf72f662ce32877e7ea530e2dd92e0b2694487868f144dfee865e23</citedby><cites>FETCH-LOGICAL-c447t-a9931ef4cbcf72f662ce32877e7ea530e2dd92e0b2694487868f144dfee865e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16075316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pare, P.W</creatorcontrib><creatorcontrib>Farag, M.A</creatorcontrib><creatorcontrib>Krishnamachari, V</creatorcontrib><creatorcontrib>Zhang, H</creatorcontrib><creatorcontrib>Ryu, C.M</creatorcontrib><creatorcontrib>Kloepper, J.W</creatorcontrib><title>Elicitors and priming agents initiate plant defense responses</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><description>Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C(6) green-leaf volatiles and C(4) bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.</description><subject>alpha-Linolenic Acid - analogs &amp; derivatives</subject><subject>alpha-Linolenic Acid - chemistry</subject><subject>alpha-Linolenic Acid - metabolism</subject><subject>Animals</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Acids - pharmacology</subject><subject>glutamine</subject><subject>Glutamine - analogs &amp; derivatives</subject><subject>Glutamine - chemistry</subject><subject>Glutamine - metabolism</subject><subject>linolenic acid</subject><subject>literature reviews</subject><subject>Pathogens</subject><subject>pest resistance</subject><subject>phytophagous insects</subject><subject>Plant Diseases - microbiology</subject><subject>plant-insect relations</subject><subject>Plants - drug effects</subject><subject>Plants - metabolism</subject><subject>Plants - microbiology</subject><subject>Signal Transduction</subject><subject>volatile organic compounds</subject><subject>Volatilization - drug effects</subject><subject>volicitin</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEQhoMoWj9-gBddPHhbnUmySfbgQaR-QMGD9hzS3UmJtLs12YL-e1NaELx4mhl4Zpj3fRk7R7hBAH2bEJFDCVCVecbya4-NsNKirEDX-2wEqFRpqro6YscpfQCAUSgO2REq0JVANWJ340VowtDHVLiuLVYxLEM3L9ycuiEVoQtDcAMVq4XrhqIlT12iIlJa9blJp-zAu0Wis109YdPH8fvDczl5fXp5uJ-UjZR6KF1dCyQvm1njNfdK8YYEN1qTJlcJIN62NSeYcVVLabRRxqOUrScyqiIuTtj19u4q9p9rSoNdhtTQIn9F_TpZZaSotf4f5KCy7Fpl8OoP-NGvY5dF2OyM2TinM4RbqIl9SpG83fjj4rdFsJsE7DYBmxPYzGi_8s7F7vB6tqT2d2NneQYut4B3vXXzGJKdvnFAAQhaIpfiB5mUiX4</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Pare, P.W</creator><creator>Farag, M.A</creator><creator>Krishnamachari, V</creator><creator>Zhang, H</creator><creator>Ryu, C.M</creator><creator>Kloepper, J.W</creator><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20050801</creationdate><title>Elicitors and priming agents initiate plant defense responses</title><author>Pare, P.W ; Farag, M.A ; Krishnamachari, V ; Zhang, H ; Ryu, C.M ; Kloepper, J.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-a9931ef4cbcf72f662ce32877e7ea530e2dd92e0b2694487868f144dfee865e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>alpha-Linolenic Acid - analogs &amp; derivatives</topic><topic>alpha-Linolenic Acid - chemistry</topic><topic>alpha-Linolenic Acid - metabolism</topic><topic>Animals</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Acids - pharmacology</topic><topic>glutamine</topic><topic>Glutamine - analogs &amp; derivatives</topic><topic>Glutamine - chemistry</topic><topic>Glutamine - metabolism</topic><topic>linolenic acid</topic><topic>literature reviews</topic><topic>Pathogens</topic><topic>pest resistance</topic><topic>phytophagous insects</topic><topic>Plant Diseases - microbiology</topic><topic>plant-insect relations</topic><topic>Plants - drug effects</topic><topic>Plants - metabolism</topic><topic>Plants - microbiology</topic><topic>Signal Transduction</topic><topic>volatile organic compounds</topic><topic>Volatilization - drug effects</topic><topic>volicitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pare, P.W</creatorcontrib><creatorcontrib>Farag, M.A</creatorcontrib><creatorcontrib>Krishnamachari, V</creatorcontrib><creatorcontrib>Zhang, H</creatorcontrib><creatorcontrib>Ryu, C.M</creatorcontrib><creatorcontrib>Kloepper, J.W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pare, P.W</au><au>Farag, M.A</au><au>Krishnamachari, V</au><au>Zhang, H</au><au>Ryu, C.M</au><au>Kloepper, J.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elicitors and priming agents initiate plant defense responses</atitle><jtitle>Photosynthesis research</jtitle><addtitle>Photosynth Res</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>85</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Biotic elicitors produced by plant pathogens or herbivore pests rapidly activate a range of plant chemical defenses when translocated to plant tissue. The fatty acid conjugate volicitin has proven to be a robust elicitor model for studying herbivore-induced plant defense responses. Here we review the role of insect-derived volicitin (N-[17-hydroxylinolenoyl]-L-glutamine) as an authentic elicitor of defense responses, specifically as an activator of signal volatiles that attract natural enemies of herbivore pests. Comparisons are drawn between volicitin as an elicitor of plant defenses and two other classes of signaling molecules, C(6) green-leaf volatiles and C(4) bacterial volatiles that appear to prime plant defenses thereby enhancing the capacity to mobilize cellular defense responses when a plant is faced with herbivore or pathogen attack.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>16075316</pmid><doi>10.1007/s11120-005-1001-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2005-08, Vol.85 (2), p.149-159
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_68439772
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects alpha-Linolenic Acid - analogs & derivatives
alpha-Linolenic Acid - chemistry
alpha-Linolenic Acid - metabolism
Animals
Fatty Acids - metabolism
Fatty Acids - pharmacology
glutamine
Glutamine - analogs & derivatives
Glutamine - chemistry
Glutamine - metabolism
linolenic acid
literature reviews
Pathogens
pest resistance
phytophagous insects
Plant Diseases - microbiology
plant-insect relations
Plants - drug effects
Plants - metabolism
Plants - microbiology
Signal Transduction
volatile organic compounds
Volatilization - drug effects
volicitin
title Elicitors and priming agents initiate plant defense responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elicitors%20and%20priming%20agents%20initiate%20plant%20defense%20responses&rft.jtitle=Photosynthesis%20research&rft.au=Pare,%20P.W&rft.date=2005-08-01&rft.volume=85&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-005-1001-x&rft_dat=%3Cproquest_cross%3E68439772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=753801667&rft_id=info:pmid/16075316&rfr_iscdi=true