One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow
The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2005-06, Vol.127 (3), p.440-449 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 3 |
container_start_page | 440 |
container_title | Journal of biomechanical engineering |
container_volume | 127 |
creator | Moore, S. M. Moorhead, K. T. Chase, J. G. David, T. Fink, J. |
description | The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional–integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results. |
doi_str_mv | 10.1115/1.1894350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68431969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19415712</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-e15253f8ddb298e099fac384f036586704d8bb2b3125e26dbbd515a3938eadda3</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFFurB8-C5CR4SN3JfnT3KK1VodJLPS-b7ARbkmzdNYr_3pQGxFM9Dcw8vAy8hFwCHQOAuIMxKM2ZoEdkCCJTqdICjsmQAlcpnTAYkLMYN5QCKE5PyQAklbTzQzJbNpjO1jU2ce0bWyW2ccnqLeDf7Yt3WMXEl8kUA-bBf9pYtJUNybzyX-fkpLRVxIt-jsjr_GE1fUoXy8fn6f0itVxmHyl2vwlWKufyTCukWpe2YIqXlEmh5IRyp_I8yxlkAjPp8twJEJZpptA6Z9mI3Oxzt8G_txg_TL2OBVaVbdC30UjFGWipD8JMaUU5l_-AVHY_ZAchaA5iAjt4u4dF8DEGLM02rGsbvg1Qs2vLgOnb6ux1H9rmNbpf2dfTgas9sLFGs_Ft6MqIhku5u_4AnQWWBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19415712</pqid></control><display><type>article</type><title>One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><creator>Moore, S. M. ; Moorhead, K. T. ; Chase, J. G. ; David, T. ; Fink, J.</creator><creatorcontrib>Moore, S. M. ; Moorhead, K. T. ; Chase, J. G. ; David, T. ; Fink, J.</creatorcontrib><description>The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional–integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.1894350</identifier><identifier>PMID: 16060350</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Blood Flow Velocity - physiology ; Blood Pressure ; Brain - blood supply ; Brain - physiology ; Cerebrovascular Circulation - physiology ; Circle of Willis - physiology ; Circulus ; Computer Simulation ; Humans ; Models, Cardiovascular ; Vascular Resistance - physiology</subject><ispartof>Journal of biomechanical engineering, 2005-06, Vol.127 (3), p.440-449</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-e15253f8ddb298e099fac384f036586704d8bb2b3125e26dbbd515a3938eadda3</citedby><cites>FETCH-LOGICAL-a462t-e15253f8ddb298e099fac384f036586704d8bb2b3125e26dbbd515a3938eadda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16060350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, S. M.</creatorcontrib><creatorcontrib>Moorhead, K. T.</creatorcontrib><creatorcontrib>Chase, J. G.</creatorcontrib><creatorcontrib>David, T.</creatorcontrib><creatorcontrib>Fink, J.</creatorcontrib><title>One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional–integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results.</description><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure</subject><subject>Brain - blood supply</subject><subject>Brain - physiology</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Circle of Willis - physiology</subject><subject>Circulus</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Vascular Resistance - physiology</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0U1Lw0AQBuBFFFurB8-C5CR4SN3JfnT3KK1VodJLPS-b7ARbkmzdNYr_3pQGxFM9Dcw8vAy8hFwCHQOAuIMxKM2ZoEdkCCJTqdICjsmQAlcpnTAYkLMYN5QCKE5PyQAklbTzQzJbNpjO1jU2ce0bWyW2ccnqLeDf7Yt3WMXEl8kUA-bBf9pYtJUNybzyX-fkpLRVxIt-jsjr_GE1fUoXy8fn6f0itVxmHyl2vwlWKufyTCukWpe2YIqXlEmh5IRyp_I8yxlkAjPp8twJEJZpptA6Z9mI3Oxzt8G_txg_TL2OBVaVbdC30UjFGWipD8JMaUU5l_-AVHY_ZAchaA5iAjt4u4dF8DEGLM02rGsbvg1Qs2vLgOnb6ux1H9rmNbpf2dfTgas9sLFGs_Ft6MqIhku5u_4AnQWWBw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Moore, S. M.</creator><creator>Moorhead, K. T.</creator><creator>Chase, J. G.</creator><creator>David, T.</creator><creator>Fink, J.</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20050601</creationdate><title>One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow</title><author>Moore, S. M. ; Moorhead, K. T. ; Chase, J. G. ; David, T. ; Fink, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-e15253f8ddb298e099fac384f036586704d8bb2b3125e26dbbd515a3938eadda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure</topic><topic>Brain - blood supply</topic><topic>Brain - physiology</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Circle of Willis - physiology</topic><topic>Circulus</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Vascular Resistance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, S. M.</creatorcontrib><creatorcontrib>Moorhead, K. T.</creatorcontrib><creatorcontrib>Chase, J. G.</creatorcontrib><creatorcontrib>David, T.</creatorcontrib><creatorcontrib>Fink, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, S. M.</au><au>Moorhead, K. T.</au><au>Chase, J. G.</au><au>David, T.</au><au>Fink, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>127</volume><issue>3</issue><spage>440</spage><epage>449</epage><pages>440-449</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><abstract>The Circle of Willis is a ring-like structure of blood vessels found beneath the hypothalamus at the base of the brain. Its main function is to distribute oxygen-rich arterial blood to the cerebral mass. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) models of the Circle of Willis have been created to provide a simulation tool which can potentially be used to identify at-risk cerebral arterial geometries and conditions and replicate clinical scenarios, such as occlusions in afferent arteries and absent circulus vessels. Both models capture cerebral haemodynamic autoregulation using a proportional–integral (PI) controller to modify efferent artery resistances to maintain optimal efferent flow rates for a given circle geometry and afferent blood pressure. The models can be used to identify at-risk cerebral arterial geometries and conditions prior to surgery or other clinical procedures. The 1D model is particularly relevant in this instance, with its fast solution time suitable for real-time clinical decisions. Results show the excellent correlation between models for the transient efferent flux profile. The assumption of strictly Poiseuille flow in the 1D model allows more flow through the geometrically extreme communicating arteries than the 3D model. This discrepancy was overcome by increasing the resistance to flow in the anterior communicating artery in the 1D model to better match the resistance seen in the 3D results.</abstract><cop>United States</cop><pub>ASME</pub><pmid>16060350</pmid><doi>10.1115/1.1894350</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2005-06, Vol.127 (3), p.440-449 |
issn | 0148-0731 1528-8951 |
language | eng |
recordid | cdi_proquest_miscellaneous_68431969 |
source | MEDLINE; ASME Transactions Journals (Current) |
subjects | Blood Flow Velocity - physiology Blood Pressure Brain - blood supply Brain - physiology Cerebrovascular Circulation - physiology Circle of Willis - physiology Circulus Computer Simulation Humans Models, Cardiovascular Vascular Resistance - physiology |
title | One-Dimensional and Three-Dimensional Models of Cerebrovascular Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20and%20Three-Dimensional%20Models%20of%20Cerebrovascular%20Flow&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Moore,%20S.%20M.&rft.date=2005-06-01&rft.volume=127&rft.issue=3&rft.spage=440&rft.epage=449&rft.pages=440-449&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.1894350&rft_dat=%3Cproquest_cross%3E19415712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19415712&rft_id=info:pmid/16060350&rfr_iscdi=true |