Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells
In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium on...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2005-07, Vol.39 (13), p.4906-4912 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4912 |
---|---|
container_issue | 13 |
container_start_page | 4906 |
container_title | Environmental science & technology |
container_volume | 39 |
creator | Gorman-Lewis, Drew Elias, Patricia E Fein, Jeremy B |
description | In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments. |
doi_str_mv | 10.1021/es047957c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68429378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17634032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</originalsourceid><addsrcrecordid>eNqF0E1rFEEQBuBGDGaNHvwDMggKHiZ29efMcR3MGghEMAFvTU93D0zsnV67ZiD593bYJSt68FSHeijeegl5A_QcKINPAanQrdTuGVmBZLSWjYTnZEUp8Lrl6scpeYl4RyllnDYvyCkoKjltYUW6tceUd_OYpioN1frXEtKC1W2200OsurTdxXAfsErTnKrP1o0xljUu_TzGEasuxIivyMlgI4bXh3lGbi--3HRf66vrzWW3vqqtpHKuh2bwoZcaBnCWWqE1iF4p3kpPWesbFzizFpqBBdf4lsp-8FYLqUQP4K3nZ-TD_u4up5ITZ7Md0ZUEdnoMbVQjWMt1818IWnFBOSvw3V_wLi15Kk-Y0hQIoRgU9HGPXE6IOQxml8etzQ8GqHns3zz1X-zbw8Gl3wZ_lIfCC3h_ABadjUPp2Y34h2ul4sCLq_duxDncP-1t_mmU5lqam2_fjWQXotsIbjbHu9bh8Yl_A_4GPHCm6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230144621</pqid></control><display><type>article</type><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</creator><creatorcontrib>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</creatorcontrib><description>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es047957c</identifier><identifier>PMID: 16053091</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Applied sciences ; Bacillus subtilis - chemistry ; Bacteria ; Biological and physicochemical phenomena ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Calcium - chemistry ; Carbon Dioxide - chemistry ; Cells ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Forecasting ; Hydrogen-Ion Concentration ; Models, Theoretical ; Natural water pollution ; Pollution ; Pollution, environment geology ; Soil and sediments pollution ; Temperature ; Uranium ; Uranium - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science & technology, 2005-07, Vol.39 (13), p.4906-4912</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</citedby><cites>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es047957c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es047957c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16956313$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16053091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorman-Lewis, Drew</creatorcontrib><creatorcontrib>Elias, Patricia E</creatorcontrib><creatorcontrib>Fein, Jeremy B</creatorcontrib><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacteria</subject><subject>Biological and physicochemical phenomena</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Calcium - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Cells</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Theoretical</subject><subject>Natural water pollution</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Soil and sediments pollution</subject><subject>Temperature</subject><subject>Uranium</subject><subject>Uranium - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1rFEEQBuBGDGaNHvwDMggKHiZ29efMcR3MGghEMAFvTU93D0zsnV67ZiD593bYJSt68FSHeijeegl5A_QcKINPAanQrdTuGVmBZLSWjYTnZEUp8Lrl6scpeYl4RyllnDYvyCkoKjltYUW6tceUd_OYpioN1frXEtKC1W2200OsurTdxXAfsErTnKrP1o0xljUu_TzGEasuxIivyMlgI4bXh3lGbi--3HRf66vrzWW3vqqtpHKuh2bwoZcaBnCWWqE1iF4p3kpPWesbFzizFpqBBdf4lsp-8FYLqUQP4K3nZ-TD_u4up5ITZ7Md0ZUEdnoMbVQjWMt1818IWnFBOSvw3V_wLi15Kk-Y0hQIoRgU9HGPXE6IOQxml8etzQ8GqHns3zz1X-zbw8Gl3wZ_lIfCC3h_ABadjUPp2Y34h2ul4sCLq_duxDncP-1t_mmU5lqam2_fjWQXotsIbjbHu9bh8Yl_A_4GPHCm6g</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Gorman-Lewis, Drew</creator><creator>Elias, Patricia E</creator><creator>Fein, Jeremy B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><author>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacteria</topic><topic>Biological and physicochemical phenomena</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Calcium - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Cells</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Theoretical</topic><topic>Natural water pollution</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Soil and sediments pollution</topic><topic>Temperature</topic><topic>Uranium</topic><topic>Uranium - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman-Lewis, Drew</creatorcontrib><creatorcontrib>Elias, Patricia E</creatorcontrib><creatorcontrib>Fein, Jeremy B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorman-Lewis, Drew</au><au>Elias, Patricia E</au><au>Fein, Jeremy B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>39</volume><issue>13</issue><spage>4906</spage><epage>4912</epage><pages>4906-4912</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16053091</pmid><doi>10.1021/es047957c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2005-07, Vol.39 (13), p.4906-4912 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_68429378 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Applied sciences Bacillus subtilis - chemistry Bacteria Biological and physicochemical phenomena Biological and physicochemical properties of pollutants. Interaction in the soil Calcium - chemistry Carbon Dioxide - chemistry Cells Earth sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Forecasting Hydrogen-Ion Concentration Models, Theoretical Natural water pollution Pollution Pollution, environment geology Soil and sediments pollution Temperature Uranium Uranium - chemistry Water treatment and pollution |
title | Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20Aqueous%20Uranyl%20Complexes%20onto%20Bacillus%20subtilis%20Cells&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Gorman-Lewis,%20Drew&rft.date=2005-07-01&rft.volume=39&rft.issue=13&rft.spage=4906&rft.epage=4912&rft.pages=4906-4912&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es047957c&rft_dat=%3Cproquest_cross%3E17634032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230144621&rft_id=info:pmid/16053091&rfr_iscdi=true |