Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells

In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2005-07, Vol.39 (13), p.4906-4912
Hauptverfasser: Gorman-Lewis, Drew, Elias, Patricia E, Fein, Jeremy B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4912
container_issue 13
container_start_page 4906
container_title Environmental science & technology
container_volume 39
creator Gorman-Lewis, Drew
Elias, Patricia E
Fein, Jeremy B
description In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.
doi_str_mv 10.1021/es047957c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68429378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17634032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</originalsourceid><addsrcrecordid>eNqF0E1rFEEQBuBGDGaNHvwDMggKHiZ29efMcR3MGghEMAFvTU93D0zsnV67ZiD593bYJSt68FSHeijeegl5A_QcKINPAanQrdTuGVmBZLSWjYTnZEUp8Lrl6scpeYl4RyllnDYvyCkoKjltYUW6tceUd_OYpioN1frXEtKC1W2200OsurTdxXAfsErTnKrP1o0xljUu_TzGEasuxIivyMlgI4bXh3lGbi--3HRf66vrzWW3vqqtpHKuh2bwoZcaBnCWWqE1iF4p3kpPWesbFzizFpqBBdf4lsp-8FYLqUQP4K3nZ-TD_u4up5ITZ7Md0ZUEdnoMbVQjWMt1818IWnFBOSvw3V_wLi15Kk-Y0hQIoRgU9HGPXE6IOQxml8etzQ8GqHns3zz1X-zbw8Gl3wZ_lIfCC3h_ABadjUPp2Y34h2ul4sCLq_duxDncP-1t_mmU5lqam2_fjWQXotsIbjbHu9bh8Yl_A_4GPHCm6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230144621</pqid></control><display><type>article</type><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</creator><creatorcontrib>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</creatorcontrib><description>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es047957c</identifier><identifier>PMID: 16053091</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Applied sciences ; Bacillus subtilis - chemistry ; Bacteria ; Biological and physicochemical phenomena ; Biological and physicochemical properties of pollutants. Interaction in the soil ; Calcium - chemistry ; Carbon Dioxide - chemistry ; Cells ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Forecasting ; Hydrogen-Ion Concentration ; Models, Theoretical ; Natural water pollution ; Pollution ; Pollution, environment geology ; Soil and sediments pollution ; Temperature ; Uranium ; Uranium - chemistry ; Water treatment and pollution</subject><ispartof>Environmental science &amp; technology, 2005-07, Vol.39 (13), p.4906-4912</ispartof><rights>Copyright © 2005 American Chemical Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</citedby><cites>FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es047957c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es047957c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16956313$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16053091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorman-Lewis, Drew</creatorcontrib><creatorcontrib>Elias, Patricia E</creatorcontrib><creatorcontrib>Fein, Jeremy B</creatorcontrib><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Bacillus subtilis - chemistry</subject><subject>Bacteria</subject><subject>Biological and physicochemical phenomena</subject><subject>Biological and physicochemical properties of pollutants. Interaction in the soil</subject><subject>Calcium - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Cells</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Theoretical</subject><subject>Natural water pollution</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Soil and sediments pollution</subject><subject>Temperature</subject><subject>Uranium</subject><subject>Uranium - chemistry</subject><subject>Water treatment and pollution</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1rFEEQBuBGDGaNHvwDMggKHiZ29efMcR3MGghEMAFvTU93D0zsnV67ZiD593bYJSt68FSHeijeegl5A_QcKINPAanQrdTuGVmBZLSWjYTnZEUp8Lrl6scpeYl4RyllnDYvyCkoKjltYUW6tceUd_OYpioN1frXEtKC1W2200OsurTdxXAfsErTnKrP1o0xljUu_TzGEasuxIivyMlgI4bXh3lGbi--3HRf66vrzWW3vqqtpHKuh2bwoZcaBnCWWqE1iF4p3kpPWesbFzizFpqBBdf4lsp-8FYLqUQP4K3nZ-TD_u4up5ITZ7Md0ZUEdnoMbVQjWMt1818IWnFBOSvw3V_wLi15Kk-Y0hQIoRgU9HGPXE6IOQxml8etzQ8GqHns3zz1X-zbw8Gl3wZ_lIfCC3h_ABadjUPp2Y34h2ul4sCLq_duxDncP-1t_mmU5lqam2_fjWQXotsIbjbHu9bh8Yl_A_4GPHCm6g</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Gorman-Lewis, Drew</creator><creator>Elias, Patricia E</creator><creator>Fein, Jeremy B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20050701</creationdate><title>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</title><author>Gorman-Lewis, Drew ; Elias, Patricia E ; Fein, Jeremy B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-f8fdeb571f1ca0a47714b66395d029d8ce32aa18f2ec8d905bfda74564b11dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Bacillus subtilis - chemistry</topic><topic>Bacteria</topic><topic>Biological and physicochemical phenomena</topic><topic>Biological and physicochemical properties of pollutants. Interaction in the soil</topic><topic>Calcium - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Cells</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Theoretical</topic><topic>Natural water pollution</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Soil and sediments pollution</topic><topic>Temperature</topic><topic>Uranium</topic><topic>Uranium - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorman-Lewis, Drew</creatorcontrib><creatorcontrib>Elias, Patricia E</creatorcontrib><creatorcontrib>Fein, Jeremy B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorman-Lewis, Drew</au><au>Elias, Patricia E</au><au>Fein, Jeremy B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2005-07-01</date><risdate>2005</risdate><volume>39</volume><issue>13</issue><spage>4906</spage><epage>4912</epage><pages>4906-4912</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>In oxygenated, CO2-rich systems, negatively charged uranyl complexes dominate the aqueous uranium speciation, and it is commonly assumed that these complexes exhibit negligible adsorption onto negatively charged surfaces such as bacteria. We measured the adsorption of 4.2 × 10-6 M aqueous uranium onto Bacillus subtilis from pH 1.5 to 9 and with wet weight bacterial concentrations from 0.125 to 0.5 g/L. Experiments were performed in the presence and absence of dissolved CO2, and additional experiments were performed in the presence of dissolved CO2 and Ca. We observed extensive uranium adsorption onto the bacterial surface under all conditions. Thermodynamic modeling of the data suggests that uranyl−hydroxide, uranyl−carbonate, and calcium−uranyl−carbonate species each can form stable surface complexes on the bacterial cell wall. These results could dramatically alter predictions of uranium mobility in near-surface environments.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>16053091</pmid><doi>10.1021/es047957c</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2005-07, Vol.39 (13), p.4906-4912
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_68429378
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Applied sciences
Bacillus subtilis - chemistry
Bacteria
Biological and physicochemical phenomena
Biological and physicochemical properties of pollutants. Interaction in the soil
Calcium - chemistry
Carbon Dioxide - chemistry
Cells
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Forecasting
Hydrogen-Ion Concentration
Models, Theoretical
Natural water pollution
Pollution
Pollution, environment geology
Soil and sediments pollution
Temperature
Uranium
Uranium - chemistry
Water treatment and pollution
title Adsorption of Aqueous Uranyl Complexes onto Bacillus subtilis Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20Aqueous%20Uranyl%20Complexes%20onto%20Bacillus%20subtilis%20Cells&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Gorman-Lewis,%20Drew&rft.date=2005-07-01&rft.volume=39&rft.issue=13&rft.spage=4906&rft.epage=4912&rft.pages=4906-4912&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es047957c&rft_dat=%3Cproquest_cross%3E17634032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230144621&rft_id=info:pmid/16053091&rfr_iscdi=true