Conductivity dispersion in supercooled calcium potassium nitrate : caged ionic motion viewed as part of standard behaviour
Conductivity spectra of ionic materials with disordered structures are usually thought to consist of several parts, i.e., the DC conductivity, a power-law component, a nearly-constant-loss feature (if identified) and the (far-)infrared conductivity caused by vibrational motion. Such a decomposition...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2007-01, Vol.9 (41), p.5582-5590 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conductivity spectra of ionic materials with disordered structures are usually thought to consist of several parts, i.e., the DC conductivity, a power-law component, a nearly-constant-loss feature (if identified) and the (far-)infrared conductivity caused by vibrational motion. Such a decomposition may, however, easily lead to a misinterpretation of the underlying dynamics. Here, we discuss broad-band conductivity data of the supercooled glass-forming melt calcium potassium nitrate, of composition 0.4 Ca(NO(3))(2).0.6 KNO(3), often abbreviated as CKN. Data have been taken at frequencies up to the far infrared. We show that the frequency-dependent conductivity is very well reproduced by a superposition of only two components. One of them is due to vibrations, the other is caused by displacements of the mobile ions. The latter component, which does not follow a power law, is described in terms of a physical model called the MIGRATION concept. This model treatment has been found to apply in many solid electrolytes as well and is, therefore, considered to provide a "standard" formulation of the ion dynamics. The gradual transition from a correlated forward-backward ("caged") ionic motion to a stepwise translational motion may be regarded as the main feature of the MIGRATION concept. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b618788a |