Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes

A quantum mechanically based procedure for estimation of crystal densities of neutral and ionic crystals is presented. In this method, volumes within 0.001 electrons/bohr3 isosurfaces of electron density for the constituent isolated neutral and ionic molecules are calculated to define the molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2007-10, Vol.111 (42), p.10874-10879
Hauptverfasser: Rice, Betsy M, Hare, Jennifer J, Byrd, Edward F. C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A quantum mechanically based procedure for estimation of crystal densities of neutral and ionic crystals is presented. In this method, volumes within 0.001 electrons/bohr3 isosurfaces of electron density for the constituent isolated neutral and ionic molecules are calculated to define the molecular volume or formula unit volumes used in predicting the crystal density. The B3LYP density functional theory in conjunction with the 6-31G** basis set were employed to generate the electron densities. The suitability of this method of crystal density prediction was assessed by subjecting a large number (289) of molecular and ionic crystals to the procedure and comparing results with experimental information. The results indicate that, for neutral molecular crystals, the root-mean-square (rms) deviation from experiment is within 4%, whereas the rms deviation is somewhat larger for the 71 ionic crystals evaluated (within 5%).
ISSN:1089-5639
1520-5215
DOI:10.1021/jp073117j