Organization of Actin Networks in Intact Filopodia

Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2007-01, Vol.17 (1), p.79-84
Hauptverfasser: Medalia, Ohad, Beck, Martin, Ecke, Mary, Weber, Igor, Neujahr, Ralph, Baumeister, Wolfgang, Gerisch, Günther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 79
container_title Current biology
container_volume 17
creator Medalia, Ohad
Beck, Martin
Ecke, Mary
Weber, Igor
Neujahr, Ralph
Baumeister, Wolfgang
Gerisch, Günther
description Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.
doi_str_mv 10.1016/j.cub.2006.11.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68409430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982206025012</els_id><sourcerecordid>19587736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</originalsourceid><addsrcrecordid>eNqFkDtv2zAUhYkiQeO6_QFZAk3ZpN5LUaSIToaRFxAkSzITFB8BHVt0SblB8-tDwwa6NXe5Z_jOGT5CzhEaBOQ_V43ZDQ0F4A1iA5R-ITPshayBse6EzEByqGVP6Rn5lvMKAGkv-VdyhoJCjxJmhD6mFz2Gdz2FOFbRVwszhbF6cNNbTK-5KvlunLSZquuwjttog_5OTr1eZ_fj-Ofk-frqaXlb3z_e3C0X97VhEqca_dAB59i5Fq3QJQmmWWu56b1mMAxG-HJW-s4OpvODkC3zHaPCtm3Pu3ZOLg-72xR_71ye1CZk49ZrPbq4y4r3DCRr4VMQZdcL0fIC4gE0KeacnFfbFDY6_VUIam9UrVQxqvZGFaIqRkvn4ji-GzbO_mscFRbg1wFwxcWf4JLKJrjROBuSM5OyMfxn_gMvxIVF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19587736</pqid></control><display><type>article</type><title>Organization of Actin Networks in Intact Filopodia</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</creator><creatorcontrib>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</creatorcontrib><description>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2006.11.022</identifier><identifier>PMID: 17208190</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Actins - metabolism ; Actins - ultrastructure ; Animals ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; CELLBIO ; Cryoelectron Microscopy - methods ; Dictyostelium ; Dictyostelium - metabolism ; Dictyostelium - physiology ; Dictyostelium - ultrastructure ; Movement - physiology ; Pseudopodia - metabolism ; Pseudopodia - physiology ; Pseudopodia - ultrastructure ; Tomography - methods</subject><ispartof>Current biology, 2007-01, Vol.17 (1), p.79-84</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</citedby><cites>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2006.11.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17208190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medalia, Ohad</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Ecke, Mary</creatorcontrib><creatorcontrib>Weber, Igor</creatorcontrib><creatorcontrib>Neujahr, Ralph</creatorcontrib><creatorcontrib>Baumeister, Wolfgang</creatorcontrib><creatorcontrib>Gerisch, Günther</creatorcontrib><title>Organization of Actin Networks in Intact Filopodia</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</description><subject>Actins - metabolism</subject><subject>Actins - ultrastructure</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>CELLBIO</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Dictyostelium</subject><subject>Dictyostelium - metabolism</subject><subject>Dictyostelium - physiology</subject><subject>Dictyostelium - ultrastructure</subject><subject>Movement - physiology</subject><subject>Pseudopodia - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Pseudopodia - ultrastructure</subject><subject>Tomography - methods</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtv2zAUhYkiQeO6_QFZAk3ZpN5LUaSIToaRFxAkSzITFB8BHVt0SblB8-tDwwa6NXe5Z_jOGT5CzhEaBOQ_V43ZDQ0F4A1iA5R-ITPshayBse6EzEByqGVP6Rn5lvMKAGkv-VdyhoJCjxJmhD6mFz2Gdz2FOFbRVwszhbF6cNNbTK-5KvlunLSZquuwjttog_5OTr1eZ_fj-Ofk-frqaXlb3z_e3C0X97VhEqca_dAB59i5Fq3QJQmmWWu56b1mMAxG-HJW-s4OpvODkC3zHaPCtm3Pu3ZOLg-72xR_71ye1CZk49ZrPbq4y4r3DCRr4VMQZdcL0fIC4gE0KeacnFfbFDY6_VUIam9UrVQxqvZGFaIqRkvn4ji-GzbO_mscFRbg1wFwxcWf4JLKJrjROBuSM5OyMfxn_gMvxIVF</recordid><startdate>20070109</startdate><enddate>20070109</enddate><creator>Medalia, Ohad</creator><creator>Beck, Martin</creator><creator>Ecke, Mary</creator><creator>Weber, Igor</creator><creator>Neujahr, Ralph</creator><creator>Baumeister, Wolfgang</creator><creator>Gerisch, Günther</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20070109</creationdate><title>Organization of Actin Networks in Intact Filopodia</title><author>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - metabolism</topic><topic>Actins - ultrastructure</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>CELLBIO</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Dictyostelium</topic><topic>Dictyostelium - metabolism</topic><topic>Dictyostelium - physiology</topic><topic>Dictyostelium - ultrastructure</topic><topic>Movement - physiology</topic><topic>Pseudopodia - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Pseudopodia - ultrastructure</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medalia, Ohad</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Ecke, Mary</creatorcontrib><creatorcontrib>Weber, Igor</creatorcontrib><creatorcontrib>Neujahr, Ralph</creatorcontrib><creatorcontrib>Baumeister, Wolfgang</creatorcontrib><creatorcontrib>Gerisch, Günther</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medalia, Ohad</au><au>Beck, Martin</au><au>Ecke, Mary</au><au>Weber, Igor</au><au>Neujahr, Ralph</au><au>Baumeister, Wolfgang</au><au>Gerisch, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organization of Actin Networks in Intact Filopodia</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2007-01-09</date><risdate>2007</risdate><volume>17</volume><issue>1</issue><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>17208190</pmid><doi>10.1016/j.cub.2006.11.022</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2007-01, Vol.17 (1), p.79-84
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_68409430
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Actins - metabolism
Actins - ultrastructure
Animals
Cell Membrane - metabolism
Cell Membrane - ultrastructure
CELLBIO
Cryoelectron Microscopy - methods
Dictyostelium
Dictyostelium - metabolism
Dictyostelium - physiology
Dictyostelium - ultrastructure
Movement - physiology
Pseudopodia - metabolism
Pseudopodia - physiology
Pseudopodia - ultrastructure
Tomography - methods
title Organization of Actin Networks in Intact Filopodia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organization%20of%20Actin%20Networks%20in%20Intact%20Filopodia&rft.jtitle=Current%20biology&rft.au=Medalia,%20Ohad&rft.date=2007-01-09&rft.volume=17&rft.issue=1&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2006.11.022&rft_dat=%3Cproquest_cross%3E19587736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19587736&rft_id=info:pmid/17208190&rft_els_id=S0960982206025012&rfr_iscdi=true