Organization of Actin Networks in Intact Filopodia
Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent...
Gespeichert in:
Veröffentlicht in: | Current biology 2007-01, Vol.17 (1), p.79-84 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Current biology |
container_volume | 17 |
creator | Medalia, Ohad Beck, Martin Ecke, Mary Weber, Igor Neujahr, Ralph Baumeister, Wolfgang Gerisch, Günther |
description | Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft. |
doi_str_mv | 10.1016/j.cub.2006.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68409430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982206025012</els_id><sourcerecordid>19587736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</originalsourceid><addsrcrecordid>eNqFkDtv2zAUhYkiQeO6_QFZAk3ZpN5LUaSIToaRFxAkSzITFB8BHVt0SblB8-tDwwa6NXe5Z_jOGT5CzhEaBOQ_V43ZDQ0F4A1iA5R-ITPshayBse6EzEByqGVP6Rn5lvMKAGkv-VdyhoJCjxJmhD6mFz2Gdz2FOFbRVwszhbF6cNNbTK-5KvlunLSZquuwjttog_5OTr1eZ_fj-Ofk-frqaXlb3z_e3C0X97VhEqca_dAB59i5Fq3QJQmmWWu56b1mMAxG-HJW-s4OpvODkC3zHaPCtm3Pu3ZOLg-72xR_71ye1CZk49ZrPbq4y4r3DCRr4VMQZdcL0fIC4gE0KeacnFfbFDY6_VUIam9UrVQxqvZGFaIqRkvn4ji-GzbO_mscFRbg1wFwxcWf4JLKJrjROBuSM5OyMfxn_gMvxIVF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19587736</pqid></control><display><type>article</type><title>Organization of Actin Networks in Intact Filopodia</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</creator><creatorcontrib>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</creatorcontrib><description>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2006.11.022</identifier><identifier>PMID: 17208190</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Actins - metabolism ; Actins - ultrastructure ; Animals ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; CELLBIO ; Cryoelectron Microscopy - methods ; Dictyostelium ; Dictyostelium - metabolism ; Dictyostelium - physiology ; Dictyostelium - ultrastructure ; Movement - physiology ; Pseudopodia - metabolism ; Pseudopodia - physiology ; Pseudopodia - ultrastructure ; Tomography - methods</subject><ispartof>Current biology, 2007-01, Vol.17 (1), p.79-84</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</citedby><cites>FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2006.11.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17208190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Medalia, Ohad</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Ecke, Mary</creatorcontrib><creatorcontrib>Weber, Igor</creatorcontrib><creatorcontrib>Neujahr, Ralph</creatorcontrib><creatorcontrib>Baumeister, Wolfgang</creatorcontrib><creatorcontrib>Gerisch, Günther</creatorcontrib><title>Organization of Actin Networks in Intact Filopodia</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</description><subject>Actins - metabolism</subject><subject>Actins - ultrastructure</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>CELLBIO</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Dictyostelium</subject><subject>Dictyostelium - metabolism</subject><subject>Dictyostelium - physiology</subject><subject>Dictyostelium - ultrastructure</subject><subject>Movement - physiology</subject><subject>Pseudopodia - metabolism</subject><subject>Pseudopodia - physiology</subject><subject>Pseudopodia - ultrastructure</subject><subject>Tomography - methods</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtv2zAUhYkiQeO6_QFZAk3ZpN5LUaSIToaRFxAkSzITFB8BHVt0SblB8-tDwwa6NXe5Z_jOGT5CzhEaBOQ_V43ZDQ0F4A1iA5R-ITPshayBse6EzEByqGVP6Rn5lvMKAGkv-VdyhoJCjxJmhD6mFz2Gdz2FOFbRVwszhbF6cNNbTK-5KvlunLSZquuwjttog_5OTr1eZ_fj-Ofk-frqaXlb3z_e3C0X97VhEqca_dAB59i5Fq3QJQmmWWu56b1mMAxG-HJW-s4OpvODkC3zHaPCtm3Pu3ZOLg-72xR_71ye1CZk49ZrPbq4y4r3DCRr4VMQZdcL0fIC4gE0KeacnFfbFDY6_VUIam9UrVQxqvZGFaIqRkvn4ji-GzbO_mscFRbg1wFwxcWf4JLKJrjROBuSM5OyMfxn_gMvxIVF</recordid><startdate>20070109</startdate><enddate>20070109</enddate><creator>Medalia, Ohad</creator><creator>Beck, Martin</creator><creator>Ecke, Mary</creator><creator>Weber, Igor</creator><creator>Neujahr, Ralph</creator><creator>Baumeister, Wolfgang</creator><creator>Gerisch, Günther</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20070109</creationdate><title>Organization of Actin Networks in Intact Filopodia</title><author>Medalia, Ohad ; Beck, Martin ; Ecke, Mary ; Weber, Igor ; Neujahr, Ralph ; Baumeister, Wolfgang ; Gerisch, Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-1fb506615e31d7a66174a43d6c8fa40bbc7ffffd9f5dbc5fb7934f5427d338653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - metabolism</topic><topic>Actins - ultrastructure</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>CELLBIO</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Dictyostelium</topic><topic>Dictyostelium - metabolism</topic><topic>Dictyostelium - physiology</topic><topic>Dictyostelium - ultrastructure</topic><topic>Movement - physiology</topic><topic>Pseudopodia - metabolism</topic><topic>Pseudopodia - physiology</topic><topic>Pseudopodia - ultrastructure</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medalia, Ohad</creatorcontrib><creatorcontrib>Beck, Martin</creatorcontrib><creatorcontrib>Ecke, Mary</creatorcontrib><creatorcontrib>Weber, Igor</creatorcontrib><creatorcontrib>Neujahr, Ralph</creatorcontrib><creatorcontrib>Baumeister, Wolfgang</creatorcontrib><creatorcontrib>Gerisch, Günther</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medalia, Ohad</au><au>Beck, Martin</au><au>Ecke, Mary</au><au>Weber, Igor</au><au>Neujahr, Ralph</au><au>Baumeister, Wolfgang</au><au>Gerisch, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organization of Actin Networks in Intact Filopodia</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2007-01-09</date><risdate>2007</risdate><volume>17</volume><issue>1</issue><spage>79</spage><epage>84</epage><pages>79-84</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Filopodia are finger-like extensions of the cell surface that are involved in sensing the environment [1], in attachment of particles for phagocytosis [2], in anchorage of cells on a substratum [3], and in the response to chemoattractants or other guidance cues [4–6]. Filopodia present an excellent model for actin-driven membrane protrusion. They grow at their tips by the assembly of actin and are stabilized along their length by a core of bundled actin filaments. To visualize actin networks in their native membrane-anchored state, filopodia of Dictyostelium cells were subjected to cryo-electron tomography. At the site of actin polymerization, a peculiar structure, the “terminal cone,” is built of short filaments fixed with their distal end to the filopod's tip and with their proximal end to the flank of the filopod. The backbone of the filopodia consists of actin filaments that are shorter than the entire filopod and aligned in parallel or obliquely to the filopod's axis. We hypothesize that growth of the highly dynamic filopodia of Dictyostelium is accompanied by repetitive nucleation of actin polymerization at the filopod tip, followed by the rearrangement of filaments within the shaft.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>17208190</pmid><doi>10.1016/j.cub.2006.11.022</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2007-01, Vol.17 (1), p.79-84 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_68409430 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Actins - metabolism Actins - ultrastructure Animals Cell Membrane - metabolism Cell Membrane - ultrastructure CELLBIO Cryoelectron Microscopy - methods Dictyostelium Dictyostelium - metabolism Dictyostelium - physiology Dictyostelium - ultrastructure Movement - physiology Pseudopodia - metabolism Pseudopodia - physiology Pseudopodia - ultrastructure Tomography - methods |
title | Organization of Actin Networks in Intact Filopodia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organization%20of%20Actin%20Networks%20in%20Intact%20Filopodia&rft.jtitle=Current%20biology&rft.au=Medalia,%20Ohad&rft.date=2007-01-09&rft.volume=17&rft.issue=1&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2006.11.022&rft_dat=%3Cproquest_cross%3E19587736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19587736&rft_id=info:pmid/17208190&rft_els_id=S0960982206025012&rfr_iscdi=true |