Parallel Folding Pathways in the SH3 Domain Protein
The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of t...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2007-11, Vol.373 (5), p.1348-1360 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1360 |
---|---|
container_issue | 5 |
container_start_page | 1348 |
container_title | Journal of molecular biology |
container_volume | 373 |
creator | Lam, A.R. Borreguero, J.M. Ding, F. Dokholyan, N.V. Buldyrev, S.V. Stanley, H.E. Shakhnovich, E. |
description | The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein. |
doi_str_mv | 10.1016/j.jmb.2007.08.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68398314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607011059</els_id><sourcerecordid>68398314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlZ_gBuZlbsZX5JpmuBKqrVCwYK6DpnkjU2Zj5pMlf57p7TgztXjwrkX3iHkmkJGgYq7dbaui4wBTDKQGXB2QoYUpEql4PKUDAEYS5nkYkAuYlwDwJjn8pwM6EQBCMqGhC9NMFWFVTJrK-ebz2RputWP2cXEN0m3wuRtzpPHtjZ9XIa2Q99ckrPSVBGvjndEPmZP79N5unh9fpk-LFLLOetSxTgtJmCE5bR0OQojx8YpLJgyiqOzjnE1dpaLUgGzkhmhQIki7_FSFIaPyO1hdxPary3GTtc-Wqwq02C7jVpIriSneQ_SA2hDG2PAUm-Cr03YaQp6b0qvdW9K701pkLo31XdujuPbokb31ziq6YH7A4D9i98eg47WY2PR-YC20671_8z_Aguud3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68398314</pqid></control><display><type>article</type><title>Parallel Folding Pathways in the SH3 Domain Protein</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</creator><creatorcontrib>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</creatorcontrib><description>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.08.032</identifier><identifier>PMID: 17900612</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Computer Simulation ; discrete molecular dynamics ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; parallel folding pathways ; Probability ; Protein Conformation ; Protein Folding ; Proteins - chemistry ; src Homology Domains ; src-SH3 domain ; transition-state ensemble</subject><ispartof>Journal of molecular biology, 2007-11, Vol.373 (5), p.1348-1360</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</citedby><cites>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283607011059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17900612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, A.R.</creatorcontrib><creatorcontrib>Borreguero, J.M.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Dokholyan, N.V.</creatorcontrib><creatorcontrib>Buldyrev, S.V.</creatorcontrib><creatorcontrib>Stanley, H.E.</creatorcontrib><creatorcontrib>Shakhnovich, E.</creatorcontrib><title>Parallel Folding Pathways in the SH3 Domain Protein</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</description><subject>Computer Simulation</subject><subject>discrete molecular dynamics</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>parallel folding pathways</subject><subject>Probability</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>src Homology Domains</subject><subject>src-SH3 domain</subject><subject>transition-state ensemble</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEURYMotlZ_gBuZlbsZX5JpmuBKqrVCwYK6DpnkjU2Zj5pMlf57p7TgztXjwrkX3iHkmkJGgYq7dbaui4wBTDKQGXB2QoYUpEql4PKUDAEYS5nkYkAuYlwDwJjn8pwM6EQBCMqGhC9NMFWFVTJrK-ebz2RputWP2cXEN0m3wuRtzpPHtjZ9XIa2Q99ckrPSVBGvjndEPmZP79N5unh9fpk-LFLLOetSxTgtJmCE5bR0OQojx8YpLJgyiqOzjnE1dpaLUgGzkhmhQIki7_FSFIaPyO1hdxPary3GTtc-Wqwq02C7jVpIriSneQ_SA2hDG2PAUm-Cr03YaQp6b0qvdW9K701pkLo31XdujuPbokb31ziq6YH7A4D9i98eg47WY2PR-YC20671_8z_Aguud3o</recordid><startdate>20071109</startdate><enddate>20071109</enddate><creator>Lam, A.R.</creator><creator>Borreguero, J.M.</creator><creator>Ding, F.</creator><creator>Dokholyan, N.V.</creator><creator>Buldyrev, S.V.</creator><creator>Stanley, H.E.</creator><creator>Shakhnovich, E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071109</creationdate><title>Parallel Folding Pathways in the SH3 Domain Protein</title><author>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Simulation</topic><topic>discrete molecular dynamics</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>parallel folding pathways</topic><topic>Probability</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>src Homology Domains</topic><topic>src-SH3 domain</topic><topic>transition-state ensemble</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, A.R.</creatorcontrib><creatorcontrib>Borreguero, J.M.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Dokholyan, N.V.</creatorcontrib><creatorcontrib>Buldyrev, S.V.</creatorcontrib><creatorcontrib>Stanley, H.E.</creatorcontrib><creatorcontrib>Shakhnovich, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, A.R.</au><au>Borreguero, J.M.</au><au>Ding, F.</au><au>Dokholyan, N.V.</au><au>Buldyrev, S.V.</au><au>Stanley, H.E.</au><au>Shakhnovich, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Folding Pathways in the SH3 Domain Protein</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2007-11-09</date><risdate>2007</risdate><volume>373</volume><issue>5</issue><spage>1348</spage><epage>1360</epage><pages>1348-1360</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17900612</pmid><doi>10.1016/j.jmb.2007.08.032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2007-11, Vol.373 (5), p.1348-1360 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_68398314 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Computer Simulation discrete molecular dynamics Hydrophobic and Hydrophilic Interactions Models, Molecular parallel folding pathways Probability Protein Conformation Protein Folding Proteins - chemistry src Homology Domains src-SH3 domain transition-state ensemble |
title | Parallel Folding Pathways in the SH3 Domain Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Folding%20Pathways%20in%20the%20SH3%20Domain%20Protein&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Lam,%20A.R.&rft.date=2007-11-09&rft.volume=373&rft.issue=5&rft.spage=1348&rft.epage=1360&rft.pages=1348-1360&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.08.032&rft_dat=%3Cproquest_cross%3E68398314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68398314&rft_id=info:pmid/17900612&rft_els_id=S0022283607011059&rfr_iscdi=true |