Parallel Folding Pathways in the SH3 Domain Protein

The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2007-11, Vol.373 (5), p.1348-1360
Hauptverfasser: Lam, A.R., Borreguero, J.M., Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., Shakhnovich, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1360
container_issue 5
container_start_page 1348
container_title Journal of molecular biology
container_volume 373
creator Lam, A.R.
Borreguero, J.M.
Ding, F.
Dokholyan, N.V.
Buldyrev, S.V.
Stanley, H.E.
Shakhnovich, E.
description The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.
doi_str_mv 10.1016/j.jmb.2007.08.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68398314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607011059</els_id><sourcerecordid>68398314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMotlZ_gBuZlbsZX5JpmuBKqrVCwYK6DpnkjU2Zj5pMlf57p7TgztXjwrkX3iHkmkJGgYq7dbaui4wBTDKQGXB2QoYUpEql4PKUDAEYS5nkYkAuYlwDwJjn8pwM6EQBCMqGhC9NMFWFVTJrK-ebz2RputWP2cXEN0m3wuRtzpPHtjZ9XIa2Q99ckrPSVBGvjndEPmZP79N5unh9fpk-LFLLOetSxTgtJmCE5bR0OQojx8YpLJgyiqOzjnE1dpaLUgGzkhmhQIki7_FSFIaPyO1hdxPary3GTtc-Wqwq02C7jVpIriSneQ_SA2hDG2PAUm-Cr03YaQp6b0qvdW9K701pkLo31XdujuPbokb31ziq6YH7A4D9i98eg47WY2PR-YC20671_8z_Aguud3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68398314</pqid></control><display><type>article</type><title>Parallel Folding Pathways in the SH3 Domain Protein</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</creator><creatorcontrib>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</creatorcontrib><description>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.08.032</identifier><identifier>PMID: 17900612</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Computer Simulation ; discrete molecular dynamics ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; parallel folding pathways ; Probability ; Protein Conformation ; Protein Folding ; Proteins - chemistry ; src Homology Domains ; src-SH3 domain ; transition-state ensemble</subject><ispartof>Journal of molecular biology, 2007-11, Vol.373 (5), p.1348-1360</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</citedby><cites>FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022283607011059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17900612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, A.R.</creatorcontrib><creatorcontrib>Borreguero, J.M.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Dokholyan, N.V.</creatorcontrib><creatorcontrib>Buldyrev, S.V.</creatorcontrib><creatorcontrib>Stanley, H.E.</creatorcontrib><creatorcontrib>Shakhnovich, E.</creatorcontrib><title>Parallel Folding Pathways in the SH3 Domain Protein</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</description><subject>Computer Simulation</subject><subject>discrete molecular dynamics</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>parallel folding pathways</subject><subject>Probability</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>src Homology Domains</subject><subject>src-SH3 domain</subject><subject>transition-state ensemble</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEURYMotlZ_gBuZlbsZX5JpmuBKqrVCwYK6DpnkjU2Zj5pMlf57p7TgztXjwrkX3iHkmkJGgYq7dbaui4wBTDKQGXB2QoYUpEql4PKUDAEYS5nkYkAuYlwDwJjn8pwM6EQBCMqGhC9NMFWFVTJrK-ebz2RputWP2cXEN0m3wuRtzpPHtjZ9XIa2Q99ckrPSVBGvjndEPmZP79N5unh9fpk-LFLLOetSxTgtJmCE5bR0OQojx8YpLJgyiqOzjnE1dpaLUgGzkhmhQIki7_FSFIaPyO1hdxPary3GTtc-Wqwq02C7jVpIriSneQ_SA2hDG2PAUm-Cr03YaQp6b0qvdW9K701pkLo31XdujuPbokb31ziq6YH7A4D9i98eg47WY2PR-YC20671_8z_Aguud3o</recordid><startdate>20071109</startdate><enddate>20071109</enddate><creator>Lam, A.R.</creator><creator>Borreguero, J.M.</creator><creator>Ding, F.</creator><creator>Dokholyan, N.V.</creator><creator>Buldyrev, S.V.</creator><creator>Stanley, H.E.</creator><creator>Shakhnovich, E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071109</creationdate><title>Parallel Folding Pathways in the SH3 Domain Protein</title><author>Lam, A.R. ; Borreguero, J.M. ; Ding, F. ; Dokholyan, N.V. ; Buldyrev, S.V. ; Stanley, H.E. ; Shakhnovich, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-9231b70a6c31fd4e6a85ad9eb29a93edcd2395dc36f902c82a69096b431ff6ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computer Simulation</topic><topic>discrete molecular dynamics</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>parallel folding pathways</topic><topic>Probability</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>src Homology Domains</topic><topic>src-SH3 domain</topic><topic>transition-state ensemble</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, A.R.</creatorcontrib><creatorcontrib>Borreguero, J.M.</creatorcontrib><creatorcontrib>Ding, F.</creatorcontrib><creatorcontrib>Dokholyan, N.V.</creatorcontrib><creatorcontrib>Buldyrev, S.V.</creatorcontrib><creatorcontrib>Stanley, H.E.</creatorcontrib><creatorcontrib>Shakhnovich, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, A.R.</au><au>Borreguero, J.M.</au><au>Ding, F.</au><au>Dokholyan, N.V.</au><au>Buldyrev, S.V.</au><au>Stanley, H.E.</au><au>Shakhnovich, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Folding Pathways in the SH3 Domain Protein</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2007-11-09</date><risdate>2007</risdate><volume>373</volume><issue>5</issue><spage>1348</spage><epage>1360</epage><pages>1348-1360</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>The transition-state ensemble (TSE) is the set of protein conformations with an equal probability to fold or unfold. Its characterization is crucial for an understanding of the folding process. We determined the TSE of the src-SH3 domain protein by using extensive molecular dynamics simulations of the Gō model and computing the folding probability of a generated set of TSE candidate conformations. We found that the TSE possesses a well-defined hydrophobic core with variable enveloping structures resulting from the superposition of three parallel folding pathways. The most preferred pathway agrees with the experimentally determined TSE, while the two least preferred pathways differ significantly. The knowledge of the different pathways allows us to design the interactions between amino acids that guide the protein to fold through the least preferred pathway. This particular design is akin to a circular permutation of the protein. The finding motivates the hypothesis that the different experimentally observed TSEs in homologous proteins and circular permutants may represent potentially available pathways to the wild-type protein.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17900612</pmid><doi>10.1016/j.jmb.2007.08.032</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2007-11, Vol.373 (5), p.1348-1360
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_68398314
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Computer Simulation
discrete molecular dynamics
Hydrophobic and Hydrophilic Interactions
Models, Molecular
parallel folding pathways
Probability
Protein Conformation
Protein Folding
Proteins - chemistry
src Homology Domains
src-SH3 domain
transition-state ensemble
title Parallel Folding Pathways in the SH3 Domain Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A34%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Folding%20Pathways%20in%20the%20SH3%20Domain%20Protein&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Lam,%20A.R.&rft.date=2007-11-09&rft.volume=373&rft.issue=5&rft.spage=1348&rft.epage=1360&rft.pages=1348-1360&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.08.032&rft_dat=%3Cproquest_cross%3E68398314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68398314&rft_id=info:pmid/17900612&rft_els_id=S0022283607011059&rfr_iscdi=true