Sequence, expression and tissue localization of a gene encoding a makorin RING zinc-finger protein in germinating rice ( Oryza sativa L. ssp . Japonica) seeds
The makorin ( MKRN) RING finger protein gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs and which are present in a wide array of eukaryotes. In the present study, we analyzed the structure and expression of a putative makorin RING finger protein gene in rice...
Gespeichert in:
Veröffentlicht in: | Plant physiology and biochemistry 2007-10, Vol.45 (10), p.767-780 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The makorin (
MKRN) RING finger protein gene family encodes proteins (makorins) with a characteristic array of zinc-finger motifs and which are present in a wide array of eukaryotes. In the present study, we analyzed the structure and expression of a putative makorin RING finger protein gene in rice (
Oryza sativa L. ssp
. Japonica cv. Nipponbare). From the analysis of the genomic (
AP003543), mRNA (
AK120250) and deduced protein (
BAD61603) sequences of the putative
MKRN gene of rice, obtained from GenBank, we found that it was indeed a
bona fide member of the
MKRN gene family. The rice
MKRN cDNA encoded a protein with four C3H zinc-finger-motifs, one putative Cys-His zinc-finger motif, and one RING zinc-finger motif. The presence of this distinct motif organization and overall amino acid identity clearly indicate that this gene is indeed a true
MKRN ortholog. We isolated RNA from embryonic axes of rice seeds at various stages of imbibition and germination and studied the temporal expression profile of
MKRN by RT–PCR. This analysis revealed that
MKRN transcripts were present at all the time points studied. It was at very low levels in dry seeds, increased slowly during imbibition and germination, and slightly declined in the seedling growth stage. After 6
days of germination, an organ-dependent expression pattern of
MKRN was observed: highest in roots and moderate in leaves. Similarly to
MKRN transcripts, transcripts of cytoskeletal actin and tubulin were also detected in dry embryos, steadily increased during imbibition and germination and leveled off after 24
h of germination. We studied the spatial expression profile of
MKRN in rice tissues, by using a relatively fast, simple and effective non-radioactive mRNA
in situ hybridization (NRISH) technique, which provided the first spatial experimental data that hints at the function of a plant makorin. This analysis revealed that
MKRN transcripts were expressed in young plumules, lateral root primordia, leaf primordia, leaves and root tissues at many different stages of germination. The presence of
MKRN transcripts in dry seeds, its early induction during germination and its continued spatiotemporal expression during early vegetative growth suggest that
MKRN has an important role in germination, leaf and lateral root morphogenesis and overall development in rice. |
---|---|
ISSN: | 0981-9428 1873-2690 |
DOI: | 10.1016/j.plaphy.2007.07.006 |