High-performance elastomeric nanocomposites via solvent-exchange processing

The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2007-01, Vol.6 (1), p.76-83
Hauptverfasser: McKinley, Gareth H, Liff, Shawna M, Kumar, Nitin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 76
container_title Nature materials
container_volume 6
creator McKinley, Gareth H
Liff, Shawna M
Kumar, Nitin
description The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.
doi_str_mv 10.1038/nmat1798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68388714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35197178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</originalsourceid><addsrcrecordid>eNqF0V1LwzAUBuAgitMp-AukeCF6Uc1H89FLGerEgTd6XbL0dOtok5m0Q_-9kc0NBPEqgTy8J-cchM4IviGYqVvb6o7IXO2hI5JJkWZC4P3NnRBKB-g4hAXGlHAuDtGASCIZZtkReh7Xs3m6BF8532prIIFGh8614GuTWG2dce3ShbqDkKxqnQTXrMB2KXyYubYzSJbeGQihtrMTdFDpJsDp5hyit4f719E4nbw8Po3uJqnJ8ryLn2OGlYxJBVIJqkpVCcxBKIyNImU15YYzKnJWSS3Lik01zzmFqdGUcU0rNkSX69xY-r2H0BVtHQw0jbbg-lAIxZSSJPsXMk7yOAkV4cUvuHC9t7GJglIqBcY5iehqjYx3IXioiqWvW-0_C4KL7zUUP2uI9HyT109bKHdwM_cIrtcgxKc4Rb8r-HeY1V3vYRu2BV9geJvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222760091</pqid></control><display><type>article</type><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</creator><creatorcontrib>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</creatorcontrib><description>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1798</identifier><identifier>PMID: 17173034</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adhesion ; Biomaterials ; Chemistry and Materials Science ; Clay ; Condensed Matter Physics ; Elastomers ; High temperature ; Materials Science ; Materials Testing ; Nanoparticles ; Nanostructures - chemistry ; Nanotechnology ; Optical and Electronic Materials ; Plastics - chemistry ; Polymers ; Polymers - chemistry ; Solvents ; Solvents - chemistry ; Surface Properties ; Thermoplastics</subject><ispartof>Nature materials, 2007-01, Vol.6 (1), p.76-83</ispartof><rights>Springer Nature Limited 2007</rights><rights>Copyright Nature Publishing Group Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</citedby><cites>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1798$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1798$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17173034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKinley, Gareth H</creatorcontrib><creatorcontrib>Liff, Shawna M</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</description><subject>Adhesion</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Condensed Matter Physics</subject><subject>Elastomers</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Plastics - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Surface Properties</subject><subject>Thermoplastics</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0V1LwzAUBuAgitMp-AukeCF6Uc1H89FLGerEgTd6XbL0dOtok5m0Q_-9kc0NBPEqgTy8J-cchM4IviGYqVvb6o7IXO2hI5JJkWZC4P3NnRBKB-g4hAXGlHAuDtGASCIZZtkReh7Xs3m6BF8532prIIFGh8614GuTWG2dce3ShbqDkKxqnQTXrMB2KXyYubYzSJbeGQihtrMTdFDpJsDp5hyit4f719E4nbw8Po3uJqnJ8ryLn2OGlYxJBVIJqkpVCcxBKIyNImU15YYzKnJWSS3Lik01zzmFqdGUcU0rNkSX69xY-r2H0BVtHQw0jbbg-lAIxZSSJPsXMk7yOAkV4cUvuHC9t7GJglIqBcY5iehqjYx3IXioiqWvW-0_C4KL7zUUP2uI9HyT109bKHdwM_cIrtcgxKc4Rb8r-HeY1V3vYRu2BV9geJvw</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>McKinley, Gareth H</creator><creator>Liff, Shawna M</creator><creator>Kumar, Nitin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20070101</creationdate><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><author>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adhesion</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Condensed Matter Physics</topic><topic>Elastomers</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Plastics - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Surface Properties</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKinley, Gareth H</creatorcontrib><creatorcontrib>Liff, Shawna M</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKinley, Gareth H</au><au>Liff, Shawna M</au><au>Kumar, Nitin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance elastomeric nanocomposites via solvent-exchange processing</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>76</spage><epage>83</epage><pages>76-83</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17173034</pmid><doi>10.1038/nmat1798</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2007-01, Vol.6 (1), p.76-83
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_68388714
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Adhesion
Biomaterials
Chemistry and Materials Science
Clay
Condensed Matter Physics
Elastomers
High temperature
Materials Science
Materials Testing
Nanoparticles
Nanostructures - chemistry
Nanotechnology
Optical and Electronic Materials
Plastics - chemistry
Polymers
Polymers - chemistry
Solvents
Solvents - chemistry
Surface Properties
Thermoplastics
title High-performance elastomeric nanocomposites via solvent-exchange processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20elastomeric%20nanocomposites%20via%20solvent-exchange%20processing&rft.jtitle=Nature%20materials&rft.au=McKinley,%20Gareth%20H&rft.date=2007-01-01&rft.volume=6&rft.issue=1&rft.spage=76&rft.epage=83&rft.pages=76-83&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1798&rft_dat=%3Cproquest_cross%3E35197178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222760091&rft_id=info:pmid/17173034&rfr_iscdi=true