High-performance elastomeric nanocomposites via solvent-exchange processing
The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the di...
Gespeichert in:
Veröffentlicht in: | Nature materials 2007-01, Vol.6 (1), p.76-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Nature materials |
container_volume | 6 |
creator | McKinley, Gareth H Liff, Shawna M Kumar, Nitin |
description | The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials. |
doi_str_mv | 10.1038/nmat1798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68388714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35197178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</originalsourceid><addsrcrecordid>eNqF0V1LwzAUBuAgitMp-AukeCF6Uc1H89FLGerEgTd6XbL0dOtok5m0Q_-9kc0NBPEqgTy8J-cchM4IviGYqVvb6o7IXO2hI5JJkWZC4P3NnRBKB-g4hAXGlHAuDtGASCIZZtkReh7Xs3m6BF8532prIIFGh8614GuTWG2dce3ShbqDkKxqnQTXrMB2KXyYubYzSJbeGQihtrMTdFDpJsDp5hyit4f719E4nbw8Po3uJqnJ8ryLn2OGlYxJBVIJqkpVCcxBKIyNImU15YYzKnJWSS3Lik01zzmFqdGUcU0rNkSX69xY-r2H0BVtHQw0jbbg-lAIxZSSJPsXMk7yOAkV4cUvuHC9t7GJglIqBcY5iehqjYx3IXioiqWvW-0_C4KL7zUUP2uI9HyT109bKHdwM_cIrtcgxKc4Rb8r-HeY1V3vYRu2BV9geJvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222760091</pqid></control><display><type>article</type><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</creator><creatorcontrib>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</creatorcontrib><description>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1798</identifier><identifier>PMID: 17173034</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adhesion ; Biomaterials ; Chemistry and Materials Science ; Clay ; Condensed Matter Physics ; Elastomers ; High temperature ; Materials Science ; Materials Testing ; Nanoparticles ; Nanostructures - chemistry ; Nanotechnology ; Optical and Electronic Materials ; Plastics - chemistry ; Polymers ; Polymers - chemistry ; Solvents ; Solvents - chemistry ; Surface Properties ; Thermoplastics</subject><ispartof>Nature materials, 2007-01, Vol.6 (1), p.76-83</ispartof><rights>Springer Nature Limited 2007</rights><rights>Copyright Nature Publishing Group Jan 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</citedby><cites>FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1798$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1798$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17173034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKinley, Gareth H</creatorcontrib><creatorcontrib>Liff, Shawna M</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</description><subject>Adhesion</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Clay</subject><subject>Condensed Matter Physics</subject><subject>Elastomers</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Nanoparticles</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Plastics - chemistry</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Surface Properties</subject><subject>Thermoplastics</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0V1LwzAUBuAgitMp-AukeCF6Uc1H89FLGerEgTd6XbL0dOtok5m0Q_-9kc0NBPEqgTy8J-cchM4IviGYqVvb6o7IXO2hI5JJkWZC4P3NnRBKB-g4hAXGlHAuDtGASCIZZtkReh7Xs3m6BF8532prIIFGh8614GuTWG2dce3ShbqDkKxqnQTXrMB2KXyYubYzSJbeGQihtrMTdFDpJsDp5hyit4f719E4nbw8Po3uJqnJ8ryLn2OGlYxJBVIJqkpVCcxBKIyNImU15YYzKnJWSS3Lik01zzmFqdGUcU0rNkSX69xY-r2H0BVtHQw0jbbg-lAIxZSSJPsXMk7yOAkV4cUvuHC9t7GJglIqBcY5iehqjYx3IXioiqWvW-0_C4KL7zUUP2uI9HyT109bKHdwM_cIrtcgxKc4Rb8r-HeY1V3vYRu2BV9geJvw</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>McKinley, Gareth H</creator><creator>Liff, Shawna M</creator><creator>Kumar, Nitin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20070101</creationdate><title>High-performance elastomeric nanocomposites via solvent-exchange processing</title><author>McKinley, Gareth H ; Liff, Shawna M ; Kumar, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-463c3d3378e78628d8f605e6800c81dfb5c532693f7a7df3ba5952ebca235a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adhesion</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Clay</topic><topic>Condensed Matter Physics</topic><topic>Elastomers</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Nanoparticles</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Plastics - chemistry</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Surface Properties</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKinley, Gareth H</creatorcontrib><creatorcontrib>Liff, Shawna M</creatorcontrib><creatorcontrib>Kumar, Nitin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKinley, Gareth H</au><au>Liff, Shawna M</au><au>Kumar, Nitin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performance elastomeric nanocomposites via solvent-exchange processing</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>6</volume><issue>1</issue><spage>76</spage><epage>83</epage><pages>76-83</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17173034</pmid><doi>10.1038/nmat1798</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2007-01, Vol.6 (1), p.76-83 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_68388714 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | Adhesion Biomaterials Chemistry and Materials Science Clay Condensed Matter Physics Elastomers High temperature Materials Science Materials Testing Nanoparticles Nanostructures - chemistry Nanotechnology Optical and Electronic Materials Plastics - chemistry Polymers Polymers - chemistry Solvents Solvents - chemistry Surface Properties Thermoplastics |
title | High-performance elastomeric nanocomposites via solvent-exchange processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performance%20elastomeric%20nanocomposites%20via%20solvent-exchange%20processing&rft.jtitle=Nature%20materials&rft.au=McKinley,%20Gareth%20H&rft.date=2007-01-01&rft.volume=6&rft.issue=1&rft.spage=76&rft.epage=83&rft.pages=76-83&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1798&rft_dat=%3Cproquest_cross%3E35197178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222760091&rft_id=info:pmid/17173034&rfr_iscdi=true |