Application of artificial neural networks for the estimation of tumour characteristics in biological tissues

Background Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce ‘forward results’. Methods Three feed‐forward neural networks (FFNN) have been developed for the estimation of tumour characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of medical robotics + computer assisted surgery 2007-09, Vol.3 (3), p.235-244
Hauptverfasser: Hosseini, Seyed Mohsen, Amiri, Mahmood, Najarian, Siamak, Dargahi, Javad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 3
container_start_page 235
container_title The international journal of medical robotics + computer assisted surgery
container_volume 3
creator Hosseini, Seyed Mohsen
Amiri, Mahmood
Najarian, Siamak
Dargahi, Javad
description Background Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce ‘forward results’. Methods Three feed‐forward neural networks (FFNN) have been developed for the estimation of tumour characteristics. Each network provides one of the three parameters of the tumour, i.e. diameter, depth and tumour:tissue stiffness ratio. A resilient back‐propagation (RP) algorithm with a leave‐one‐out (LOO) cross‐validation approach is used for training purposes. Results The proposed inverse approach based on neural networks is a reliable and efficient tool for diagnostic tests in order to accurately estimate the basic parameters of the tumour in the tissue. Conclusion There is a non‐linear correlation between the tumour characteristics and their effects on the extracted features. In general, reliable estimation of tumour stiffness is obtained when the depth of tumour is small. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcs.138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68385775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30967629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3848-34db9ca94b4ab90fd4f10f7caee6ef2e0369d388a233771faf87c88f0937b3403</originalsourceid><addsrcrecordid>eNqFkctOLCEURYm5xnf8gxtGOjClUFAFDE3HV-Ij8T0jFA1XlG5aoKL-vWh12pG5o0NyFuskewOwjdE-Rqg-iDrtY8KXwBqmjFeNaB__LN4NXgXrKT0jRBva0hWwilnDGBd4DfjD2cw7rbILUxgsVDE767RTHk5NH79HfgvxJUEbIsxPBpqU3WTxIfeT0Eeon1RUOpvoylYn6Kawc8GHf8XtYXYp9SZtgmWrfDJb87kB7o6Pbken1fnVydno8LzShFNeETruhFaCdlR1AtkxtRhZppUxrbG1QaQVY8K5qglhDFtlOdOcWyQI6whFZAPsDN5ZDK_lbpYTl7TxXk1N6JNsOeElgOa_IEGiZW0tCrg7gDqGlKKxchZLCPFDYiS_GpClAVkaKOTfubLvJmb8w80jL8DeALw5bz5-88jr0c2gqwa65GreF7SKL7JlhDXy4fJEnta0ubiviaTkEwNgoIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30967629</pqid></control><display><type>article</type><title>Application of artificial neural networks for the estimation of tumour characteristics in biological tissues</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Hosseini, Seyed Mohsen ; Amiri, Mahmood ; Najarian, Siamak ; Dargahi, Javad</creator><creatorcontrib>Hosseini, Seyed Mohsen ; Amiri, Mahmood ; Najarian, Siamak ; Dargahi, Javad</creatorcontrib><description>Background Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce ‘forward results’. Methods Three feed‐forward neural networks (FFNN) have been developed for the estimation of tumour characteristics. Each network provides one of the three parameters of the tumour, i.e. diameter, depth and tumour:tissue stiffness ratio. A resilient back‐propagation (RP) algorithm with a leave‐one‐out (LOO) cross‐validation approach is used for training purposes. Results The proposed inverse approach based on neural networks is a reliable and efficient tool for diagnostic tests in order to accurately estimate the basic parameters of the tumour in the tissue. Conclusion There is a non‐linear correlation between the tumour characteristics and their effects on the extracted features. In general, reliable estimation of tumour stiffness is obtained when the depth of tumour is small. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1478-5951</identifier><identifier>EISSN: 1478-596X</identifier><identifier>DOI: 10.1002/rcs.138</identifier><identifier>PMID: 17577891</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; artificial neural network ; Artificial tactile sensing ; Computer Simulation ; Diagnosis, Computer-Assisted - methods ; Humans ; inverse solution ; Models, Biological ; Neoplasms - diagnosis ; Neoplasms - physiopathology ; Neural Networks (Computer) ; Palpation - methods ; Pattern Recognition, Automated - methods</subject><ispartof>The international journal of medical robotics + computer assisted surgery, 2007-09, Vol.3 (3), p.235-244</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>2007 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3848-34db9ca94b4ab90fd4f10f7caee6ef2e0369d388a233771faf87c88f0937b3403</citedby><cites>FETCH-LOGICAL-c3848-34db9ca94b4ab90fd4f10f7caee6ef2e0369d388a233771faf87c88f0937b3403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcs.138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcs.138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17577891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseini, Seyed Mohsen</creatorcontrib><creatorcontrib>Amiri, Mahmood</creatorcontrib><creatorcontrib>Najarian, Siamak</creatorcontrib><creatorcontrib>Dargahi, Javad</creatorcontrib><title>Application of artificial neural networks for the estimation of tumour characteristics in biological tissues</title><title>The international journal of medical robotics + computer assisted surgery</title><addtitle>Int. J. Med. Robotics Comput. Assist. Surg</addtitle><description>Background Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce ‘forward results’. Methods Three feed‐forward neural networks (FFNN) have been developed for the estimation of tumour characteristics. Each network provides one of the three parameters of the tumour, i.e. diameter, depth and tumour:tissue stiffness ratio. A resilient back‐propagation (RP) algorithm with a leave‐one‐out (LOO) cross‐validation approach is used for training purposes. Results The proposed inverse approach based on neural networks is a reliable and efficient tool for diagnostic tests in order to accurately estimate the basic parameters of the tumour in the tissue. Conclusion There is a non‐linear correlation between the tumour characteristics and their effects on the extracted features. In general, reliable estimation of tumour stiffness is obtained when the depth of tumour is small. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial tactile sensing</subject><subject>Computer Simulation</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Humans</subject><subject>inverse solution</subject><subject>Models, Biological</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - physiopathology</subject><subject>Neural Networks (Computer)</subject><subject>Palpation - methods</subject><subject>Pattern Recognition, Automated - methods</subject><issn>1478-5951</issn><issn>1478-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOLCEURYm5xnf8gxtGOjClUFAFDE3HV-Ij8T0jFA1XlG5aoKL-vWh12pG5o0NyFuskewOwjdE-Rqg-iDrtY8KXwBqmjFeNaB__LN4NXgXrKT0jRBva0hWwilnDGBd4DfjD2cw7rbILUxgsVDE767RTHk5NH79HfgvxJUEbIsxPBpqU3WTxIfeT0Eeon1RUOpvoylYn6Kawc8GHf8XtYXYp9SZtgmWrfDJb87kB7o6Pbken1fnVydno8LzShFNeETruhFaCdlR1AtkxtRhZppUxrbG1QaQVY8K5qglhDFtlOdOcWyQI6whFZAPsDN5ZDK_lbpYTl7TxXk1N6JNsOeElgOa_IEGiZW0tCrg7gDqGlKKxchZLCPFDYiS_GpClAVkaKOTfubLvJmb8w80jL8DeALw5bz5-88jr0c2gqwa65GreF7SKL7JlhDXy4fJEnta0ubiviaTkEwNgoIk</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Hosseini, Seyed Mohsen</creator><creator>Amiri, Mahmood</creator><creator>Najarian, Siamak</creator><creator>Dargahi, Javad</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Application of artificial neural networks for the estimation of tumour characteristics in biological tissues</title><author>Hosseini, Seyed Mohsen ; Amiri, Mahmood ; Najarian, Siamak ; Dargahi, Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3848-34db9ca94b4ab90fd4f10f7caee6ef2e0369d388a233771faf87c88f0937b3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial tactile sensing</topic><topic>Computer Simulation</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Humans</topic><topic>inverse solution</topic><topic>Models, Biological</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - physiopathology</topic><topic>Neural Networks (Computer)</topic><topic>Palpation - methods</topic><topic>Pattern Recognition, Automated - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Seyed Mohsen</creatorcontrib><creatorcontrib>Amiri, Mahmood</creatorcontrib><creatorcontrib>Najarian, Siamak</creatorcontrib><creatorcontrib>Dargahi, Javad</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, Seyed Mohsen</au><au>Amiri, Mahmood</au><au>Najarian, Siamak</au><au>Dargahi, Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of artificial neural networks for the estimation of tumour characteristics in biological tissues</atitle><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle><addtitle>Int. J. Med. Robotics Comput. Assist. Surg</addtitle><date>2007-09</date><risdate>2007</risdate><volume>3</volume><issue>3</issue><spage>235</spage><epage>244</epage><pages>235-244</pages><issn>1478-5951</issn><eissn>1478-596X</eissn><abstract>Background Artificial tactile sensing is a method in which the existence of tumours in biological tissues can be detected and computerized inverse analyses used to produce ‘forward results’. Methods Three feed‐forward neural networks (FFNN) have been developed for the estimation of tumour characteristics. Each network provides one of the three parameters of the tumour, i.e. diameter, depth and tumour:tissue stiffness ratio. A resilient back‐propagation (RP) algorithm with a leave‐one‐out (LOO) cross‐validation approach is used for training purposes. Results The proposed inverse approach based on neural networks is a reliable and efficient tool for diagnostic tests in order to accurately estimate the basic parameters of the tumour in the tissue. Conclusion There is a non‐linear correlation between the tumour characteristics and their effects on the extracted features. In general, reliable estimation of tumour stiffness is obtained when the depth of tumour is small. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17577891</pmid><doi>10.1002/rcs.138</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-5951
ispartof The international journal of medical robotics + computer assisted surgery, 2007-09, Vol.3 (3), p.235-244
issn 1478-5951
1478-596X
language eng
recordid cdi_proquest_miscellaneous_68385775
source MEDLINE; Wiley Online Library All Journals
subjects Algorithms
artificial neural network
Artificial tactile sensing
Computer Simulation
Diagnosis, Computer-Assisted - methods
Humans
inverse solution
Models, Biological
Neoplasms - diagnosis
Neoplasms - physiopathology
Neural Networks (Computer)
Palpation - methods
Pattern Recognition, Automated - methods
title Application of artificial neural networks for the estimation of tumour characteristics in biological tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20artificial%20neural%20networks%20for%20the%20estimation%20of%20tumour%20characteristics%20in%20biological%20tissues&rft.jtitle=The%20international%20journal%20of%20medical%20robotics%20+%20computer%20assisted%20surgery&rft.au=Hosseini,%20Seyed%20Mohsen&rft.date=2007-09&rft.volume=3&rft.issue=3&rft.spage=235&rft.epage=244&rft.pages=235-244&rft.issn=1478-5951&rft.eissn=1478-596X&rft_id=info:doi/10.1002/rcs.138&rft_dat=%3Cproquest_cross%3E30967629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30967629&rft_id=info:pmid/17577891&rfr_iscdi=true