Advanced fuzzy cellular neural network: Application to CT liver images

Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2007-01, Vol.39 (1), p.65-77
Hauptverfasser: Wang, Shitong, Fu, Duan, Xu, Min, Hu, Dewen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 65
container_title Artificial intelligence in medicine
container_volume 39
creator Wang, Shitong
Fu, Duan
Xu, Min
Hu, Dewen
description Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.
doi_str_mv 10.1016/j.artmed.2006.08.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68382103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365706001242</els_id><sourcerecordid>19757908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERZfCN0AoJ24J49jxHw5IqxUFpEo9tD1brj1B3nqTxU4WbT89jnbFgUtPc_B7b8a_R8gHCg0FKj5vG5umHfqmBRANqAaAviIrqiSrWyXgNVmBZqxmopOX5G3OWwCQnIo35JJKaLUUfEWu1_5gB4e-6ufn52PlMMY52lQNOCcby5j-jOnpS7Xe72NwdgrjUE1jtbmvYjhgqsLO_sL8jlz0NmZ8f55X5OH62_3mR31z-_3nZn1TO87FVPcOuEfbCqds70FSSrWF3ooetLfUS6HxUQPruFC8s9rTnlqQXae0VJ3W7Ip8OuXu0_h7xjyZXcjLzXbAcc5GKKZaCuxFIdWykxpUEfKT0KUx54S92afyp3Q0FMwC2mzNCbRZQBtQpoAuto_n_PlxeftnOpMtgq8nARYch4DJZBdwIR0Susn4Mby04f8AF8NQKohPeMS8Hec0FNSGmtwaMHdL2UvXIIq75S37C6CCpJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19757908</pqid></control><display><type>article</type><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</creator><creatorcontrib>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</creatorcontrib><description>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2006.08.001</identifier><identifier>PMID: 17029764</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cellular neural networks ; CT liver images ; Fuzzy cellular neural networks ; Fuzzy Logic ; Image segmentation ; Internal Medicine ; Liver - diagnostic imaging ; Neural Networks (Computer) ; Other ; Parameter templates ; Tomography, X-Ray Computed</subject><ispartof>Artificial intelligence in medicine, 2007-01, Vol.39 (1), p.65-77</ispartof><rights>Elsevier B.V.</rights><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</citedby><cites>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2006.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17029764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shitong</creatorcontrib><creatorcontrib>Fu, Duan</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</description><subject>Cellular neural networks</subject><subject>CT liver images</subject><subject>Fuzzy cellular neural networks</subject><subject>Fuzzy Logic</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Liver - diagnostic imaging</subject><subject>Neural Networks (Computer)</subject><subject>Other</subject><subject>Parameter templates</subject><subject>Tomography, X-Ray Computed</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1ERZfCN0AoJ24J49jxHw5IqxUFpEo9tD1brj1B3nqTxU4WbT89jnbFgUtPc_B7b8a_R8gHCg0FKj5vG5umHfqmBRANqAaAviIrqiSrWyXgNVmBZqxmopOX5G3OWwCQnIo35JJKaLUUfEWu1_5gB4e-6ufn52PlMMY52lQNOCcby5j-jOnpS7Xe72NwdgrjUE1jtbmvYjhgqsLO_sL8jlz0NmZ8f55X5OH62_3mR31z-_3nZn1TO87FVPcOuEfbCqds70FSSrWF3ooetLfUS6HxUQPruFC8s9rTnlqQXae0VJ3W7Ip8OuXu0_h7xjyZXcjLzXbAcc5GKKZaCuxFIdWykxpUEfKT0KUx54S92afyp3Q0FMwC2mzNCbRZQBtQpoAuto_n_PlxeftnOpMtgq8nARYch4DJZBdwIR0Susn4Mby04f8AF8NQKohPeMS8Hec0FNSGmtwaMHdL2UvXIIq75S37C6CCpJs</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Wang, Shitong</creator><creator>Fu, Duan</creator><creator>Xu, Min</creator><creator>Hu, Dewen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070101</creationdate><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><author>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cellular neural networks</topic><topic>CT liver images</topic><topic>Fuzzy cellular neural networks</topic><topic>Fuzzy Logic</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Liver - diagnostic imaging</topic><topic>Neural Networks (Computer)</topic><topic>Other</topic><topic>Parameter templates</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shitong</creatorcontrib><creatorcontrib>Fu, Duan</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shitong</au><au>Fu, Duan</au><au>Xu, Min</au><au>Hu, Dewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced fuzzy cellular neural network: Application to CT liver images</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>39</volume><issue>1</issue><spage>65</spage><epage>77</epage><pages>65-77</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17029764</pmid><doi>10.1016/j.artmed.2006.08.001</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2007-01, Vol.39 (1), p.65-77
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_68382103
source MEDLINE; Elsevier ScienceDirect Journals
subjects Cellular neural networks
CT liver images
Fuzzy cellular neural networks
Fuzzy Logic
Image segmentation
Internal Medicine
Liver - diagnostic imaging
Neural Networks (Computer)
Other
Parameter templates
Tomography, X-Ray Computed
title Advanced fuzzy cellular neural network: Application to CT liver images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20fuzzy%20cellular%20neural%20network:%20Application%20to%20CT%20liver%20images&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Wang,%20Shitong&rft.date=2007-01-01&rft.volume=39&rft.issue=1&rft.spage=65&rft.epage=77&rft.pages=65-77&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2006.08.001&rft_dat=%3Cproquest_cross%3E19757908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19757908&rft_id=info:pmid/17029764&rft_els_id=S0933365706001242&rfr_iscdi=true