Advanced fuzzy cellular neural network: Application to CT liver images
Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2007-01, Vol.39 (1), p.65-77 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Artificial intelligence in medicine |
container_volume | 39 |
creator | Wang, Shitong Fu, Duan Xu, Min Hu, Dewen |
description | Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images. |
doi_str_mv | 10.1016/j.artmed.2006.08.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68382103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365706001242</els_id><sourcerecordid>19757908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERZfCN0AoJ24J49jxHw5IqxUFpEo9tD1brj1B3nqTxU4WbT89jnbFgUtPc_B7b8a_R8gHCg0FKj5vG5umHfqmBRANqAaAviIrqiSrWyXgNVmBZqxmopOX5G3OWwCQnIo35JJKaLUUfEWu1_5gB4e-6ufn52PlMMY52lQNOCcby5j-jOnpS7Xe72NwdgrjUE1jtbmvYjhgqsLO_sL8jlz0NmZ8f55X5OH62_3mR31z-_3nZn1TO87FVPcOuEfbCqds70FSSrWF3ooetLfUS6HxUQPruFC8s9rTnlqQXae0VJ3W7Ip8OuXu0_h7xjyZXcjLzXbAcc5GKKZaCuxFIdWykxpUEfKT0KUx54S92afyp3Q0FMwC2mzNCbRZQBtQpoAuto_n_PlxeftnOpMtgq8nARYch4DJZBdwIR0Susn4Mby04f8AF8NQKohPeMS8Hec0FNSGmtwaMHdL2UvXIIq75S37C6CCpJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19757908</pqid></control><display><type>article</type><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</creator><creatorcontrib>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</creatorcontrib><description>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2006.08.001</identifier><identifier>PMID: 17029764</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cellular neural networks ; CT liver images ; Fuzzy cellular neural networks ; Fuzzy Logic ; Image segmentation ; Internal Medicine ; Liver - diagnostic imaging ; Neural Networks (Computer) ; Other ; Parameter templates ; Tomography, X-Ray Computed</subject><ispartof>Artificial intelligence in medicine, 2007-01, Vol.39 (1), p.65-77</ispartof><rights>Elsevier B.V.</rights><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</citedby><cites>FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2006.08.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17029764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shitong</creatorcontrib><creatorcontrib>Fu, Duan</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><title>Artificial intelligence in medicine</title><addtitle>Artif Intell Med</addtitle><description>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</description><subject>Cellular neural networks</subject><subject>CT liver images</subject><subject>Fuzzy cellular neural networks</subject><subject>Fuzzy Logic</subject><subject>Image segmentation</subject><subject>Internal Medicine</subject><subject>Liver - diagnostic imaging</subject><subject>Neural Networks (Computer)</subject><subject>Other</subject><subject>Parameter templates</subject><subject>Tomography, X-Ray Computed</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxS1ERZfCN0AoJ24J49jxHw5IqxUFpEo9tD1brj1B3nqTxU4WbT89jnbFgUtPc_B7b8a_R8gHCg0FKj5vG5umHfqmBRANqAaAviIrqiSrWyXgNVmBZqxmopOX5G3OWwCQnIo35JJKaLUUfEWu1_5gB4e-6ufn52PlMMY52lQNOCcby5j-jOnpS7Xe72NwdgrjUE1jtbmvYjhgqsLO_sL8jlz0NmZ8f55X5OH62_3mR31z-_3nZn1TO87FVPcOuEfbCqds70FSSrWF3ooetLfUS6HxUQPruFC8s9rTnlqQXae0VJ3W7Ip8OuXu0_h7xjyZXcjLzXbAcc5GKKZaCuxFIdWykxpUEfKT0KUx54S92afyp3Q0FMwC2mzNCbRZQBtQpoAuto_n_PlxeftnOpMtgq8nARYch4DJZBdwIR0Susn4Mby04f8AF8NQKohPeMS8Hec0FNSGmtwaMHdL2UvXIIq75S37C6CCpJs</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Wang, Shitong</creator><creator>Fu, Duan</creator><creator>Xu, Min</creator><creator>Hu, Dewen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070101</creationdate><title>Advanced fuzzy cellular neural network: Application to CT liver images</title><author>Wang, Shitong ; Fu, Duan ; Xu, Min ; Hu, Dewen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-fc04dea26c8afd071119a0fa6f09da1d769eb903546845a9d1f1a075589785993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cellular neural networks</topic><topic>CT liver images</topic><topic>Fuzzy cellular neural networks</topic><topic>Fuzzy Logic</topic><topic>Image segmentation</topic><topic>Internal Medicine</topic><topic>Liver - diagnostic imaging</topic><topic>Neural Networks (Computer)</topic><topic>Other</topic><topic>Parameter templates</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shitong</creatorcontrib><creatorcontrib>Fu, Duan</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Hu, Dewen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shitong</au><au>Fu, Duan</au><au>Xu, Min</au><au>Hu, Dewen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced fuzzy cellular neural network: Application to CT liver images</atitle><jtitle>Artificial intelligence in medicine</jtitle><addtitle>Artif Intell Med</addtitle><date>2007-01-01</date><risdate>2007</risdate><volume>39</volume><issue>1</issue><spage>65</spage><epage>77</epage><pages>65-77</pages><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Summary Objective To achieve better boundary integrities and recall accuracies for segmented liver images, use of the advanced fuzzy cellular neural network (AFCNN), as a variant of the fuzzy cellular neural network (FCNN), is proposed to effectively segment CT liver images. Materials and methods In order to better utilize relevant contour and gray information from liver images, we have improved the FCNN [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], which proved to be very effective for the segmentation of microscopic white blood cell images, to create the novel neural network, AFCNN. Its convergent property and global stability are proved. Based on the FCNN-based NDA algorithm [Wang S, Wang M. A new algorithm NDA based on fuzzy cellular neural networks for white blood cell detection. IEEE Trans Inform Technol Biomed, in press], we developed the AFCNN-based NDA algorithm, which we used to segment 5 CT liver images. For comparison, we also segmented the same 5 CT liver images using the FCNN-based NDA algorithm. Results and conclusion : AFCNN has distinct advantages over FCNN in both boundary integrity and recall accuracy. In particular, the performance index Binary_rate is generally much higher for AFCNN than for FCNN when applied to CT liver images.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17029764</pmid><doi>10.1016/j.artmed.2006.08.001</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2007-01, Vol.39 (1), p.65-77 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_68382103 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Cellular neural networks CT liver images Fuzzy cellular neural networks Fuzzy Logic Image segmentation Internal Medicine Liver - diagnostic imaging Neural Networks (Computer) Other Parameter templates Tomography, X-Ray Computed |
title | Advanced fuzzy cellular neural network: Application to CT liver images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A00%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20fuzzy%20cellular%20neural%20network:%20Application%20to%20CT%20liver%20images&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Wang,%20Shitong&rft.date=2007-01-01&rft.volume=39&rft.issue=1&rft.spage=65&rft.epage=77&rft.pages=65-77&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2006.08.001&rft_dat=%3Cproquest_cross%3E19757908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19757908&rft_id=info:pmid/17029764&rft_els_id=S0933365706001242&rfr_iscdi=true |