Altered insulin-mediated and insulin-like growth factor-1-mediated vasorelaxation in aortas of obese Zucker rats
Objective: Insulin and insulin-like growth factor-1 (IGF-1) have vasorelaxant effects in vivo, which is dependent on nitric oxide (NO) production. The aim of this study was to investigate the vasorelaxant responses mediated by insulin and/or IGF-1 in aortas of obese Zucker rats. Methods: The thoraci...
Gespeichert in:
Veröffentlicht in: | International Journal of Obesity 2007-01, Vol.31 (1), p.72-77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: Insulin and insulin-like growth factor-1 (IGF-1) have vasorelaxant effects in vivo, which is dependent on nitric oxide (NO) production. The aim of this study was to investigate the vasorelaxant responses mediated by insulin and/or IGF-1 in aortas of obese Zucker rats. Methods: The thoracic aortas of eight lean and eight obese Zucker rats (6 months old) were isolated for vasorelaxation analysis. Insulin-induced and IGF-1-induced vasorelaxant responses were evaluated by the isometric tension of aortic rings in the organ bathes. The roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS) in vasorelaxant responses were examined by treating selective inhibitors, such as wortmannin (an inhibitor of PI3K) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a NOS inhibitor). In addition, the vascular responses to sodium nitroprusside (SNP), a direct vasodilator of vascular smooth muscle, were examined. Results: The insulin-induced vasorelaxation in aortas of obese rats was significantly decreased, whereas the IGF-1-induced vasorelaxation was significantly increased, compared with that in lean rats. After the pre-administration of wortmannin or L-NAME, the altered insulin-induced or IGF-1-induced vasorelaxation was abolished. There was no significant difference in the SNP-induced vasorelaxation between lean and obese rats. Conclusion: Our findings suggested that the decreased insulin-mediated vasorelaxation in obese rats appeared to be counteracted by the increased IGF-1-mediated vasorelaxation. Furthermore, the NO-dependent pathway was involved in the altered vasorelaxant responses. However, the SNP-induced vasorelaxation was not changed in obese rats. |
---|---|
ISSN: | 0307-0565 1476-5497 |
DOI: | 10.1038/sj.ijo.0803364 |