Preparation of Superparamagnetic Ribonuclease A Surface-Imprinted Submicrometer Particles for Protein Recognition in Aqueous Media

Superparamagnetic ribonuclease A surface-imprinted polymeric particles that can preferentially bind the template protein in an aqueous environment were prepared in this study. Methyl methacrylate and ethylene glycol dimethacrylate were employed as the functional and cross-linker monomers, respective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-01, Vol.79 (1), p.299-306
Hauptverfasser: Tan, Chau Jin, Tong, Yen Wah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superparamagnetic ribonuclease A surface-imprinted polymeric particles that can preferentially bind the template protein in an aqueous environment were prepared in this study. Methyl methacrylate and ethylene glycol dimethacrylate were employed as the functional and cross-linker monomers, respectively. Regularly shaped submicrometer (700−800 nm) particles imprinted with ribonuclease A were successfully prepared using redox-initiated miniemulsion polymerization. Nanosized Fe3O4 magnetite was encapsulated in the imprinted particles with good encapsulation efficiency (17.5 wt %) for the incorporation of the superparamagnetic property. Good selectivity toward the template over the control protein in an aqueous environment was demonstrated by the imprinted particles in the batchwise and competitive rebinding tests with the highest template loading, Q max, of 127.7 mg/g observed in the batch rebinding test. Given the small sizes of the imprinted particles and the presence of the binding sites on the surface, the rebinding process was kinetically favorable despite the sheer bulk of the macromolecules. In the desorption study, it was found that the more hydrophobic solvent was more effective for ribonuclease A desorption from the imprinted particles. This indicated that the hydrophobic effect was probably the main form of interaction responsible for the template rebinding to the imprinted sites in an aqueous media.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac061364y