Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations

Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2007-01, Vol.28 (2), p.555-569
Hauptverfasser: Jurečka, Petr, Černý, Jiří, Hobza, Pavel, Salahub, Dennis R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 2
container_start_page 555
container_title Journal of computational chemistry
container_volume 28
creator Jurečka, Petr
Černý, Jiří
Hobza, Pavel
Salahub, Dennis R.
description Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high‐level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated—B‐LYP, B3‐LYP, PBE, TPSS, TPSSh, and BH‐LYP—and even surpass the MP2/cc‐pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, sR, scaling globally the vdW radii. For good results, a basis set of at least triple‐ζ quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen‐bonded and stacked complexes considered, respectively. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 555–569, 2007
doi_str_mv 10.1002/jcc.20570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68375159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68375159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3610-f92112123dfdfec752141ef497bd96908ab157318373326b3e77e260b7b4c1f83</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS0EotPCgh9AXiGxyNSOEztZogFKUSmLgmBnOc7LjEtsp7bTdj6Of8PTGcqKlW353POedBF6RcmSElKeXmu9LEktyBO0oKTlRduIn0_RgtC2LBpe0yN0HOM1IYTVvHqOjqigDa-adoF-vwcXTdriYXY6Ge_UiNMGfNhiNa8tuAQ9vjNpg5XDYCcTjM5Ib-IEIWYeJwh2ic8zGNSDAYODsDYQc6THa_AWUtg9_YAbgp132t-qMaux9nYa4T7_7W4qPM7qsHEmy_DNrFyaLbagN8oZnUk16nlUu0nxBXo2qDHCy8N5gr5__PBt9am4-Hp2vnp3UWjGKSmGtqS0pCXrh34ALeqSVhSGqhVd3_KWNKqjtWC0YYKxkncMhICSk050laZDw07Qm713Cv5mhpikNVHDOCoHfo6S52RN6zaDb_egDj7GAIOcgrEqbCUlcteVzF3Jh64y-_ognTsL_T_yUE4GTvfAnRlh-3-T_Lxa_VUW-4SJCe4fEyr8klzkFeWPyzNJrlb0S311KTn7A2bDsb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68375159</pqid></control><display><type>article</type><title>Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jurečka, Petr ; Černý, Jiří ; Hobza, Pavel ; Salahub, Dennis R.</creator><creatorcontrib>Jurečka, Petr ; Černý, Jiří ; Hobza, Pavel ; Salahub, Dennis R.</creatorcontrib><description>Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high‐level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated—B‐LYP, B3‐LYP, PBE, TPSS, TPSSh, and BH‐LYP—and even surpass the MP2/cc‐pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, sR, scaling globally the vdW radii. For good results, a basis set of at least triple‐ζ quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen‐bonded and stacked complexes considered, respectively. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 555–569, 2007</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.20570</identifier><identifier>PMID: 17186489</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>density functional theory ; dispersion interaction ; empirical corrections ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Chemical ; Organic Chemicals - chemistry ; Quantum Theory ; Thermodynamics ; van der Waals complexes</subject><ispartof>Journal of computational chemistry, 2007-01, Vol.28 (2), p.555-569</ispartof><rights>Copyright © 2006 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3610-f92112123dfdfec752141ef497bd96908ab157318373326b3e77e260b7b4c1f83</citedby><cites>FETCH-LOGICAL-c3610-f92112123dfdfec752141ef497bd96908ab157318373326b3e77e260b7b4c1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.20570$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.20570$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17186489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurečka, Petr</creatorcontrib><creatorcontrib>Černý, Jiří</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><title>Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high‐level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated—B‐LYP, B3‐LYP, PBE, TPSS, TPSSh, and BH‐LYP—and even surpass the MP2/cc‐pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, sR, scaling globally the vdW radii. For good results, a basis set of at least triple‐ζ quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen‐bonded and stacked complexes considered, respectively. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 555–569, 2007</description><subject>density functional theory</subject><subject>dispersion interaction</subject><subject>empirical corrections</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Chemical</subject><subject>Organic Chemicals - chemistry</subject><subject>Quantum Theory</subject><subject>Thermodynamics</subject><subject>van der Waals complexes</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS0EotPCgh9AXiGxyNSOEztZogFKUSmLgmBnOc7LjEtsp7bTdj6Of8PTGcqKlW353POedBF6RcmSElKeXmu9LEktyBO0oKTlRduIn0_RgtC2LBpe0yN0HOM1IYTVvHqOjqigDa-adoF-vwcXTdriYXY6Ge_UiNMGfNhiNa8tuAQ9vjNpg5XDYCcTjM5Ib-IEIWYeJwh2ic8zGNSDAYODsDYQc6THa_AWUtg9_YAbgp132t-qMaux9nYa4T7_7W4qPM7qsHEmy_DNrFyaLbagN8oZnUk16nlUu0nxBXo2qDHCy8N5gr5__PBt9am4-Hp2vnp3UWjGKSmGtqS0pCXrh34ALeqSVhSGqhVd3_KWNKqjtWC0YYKxkncMhICSk050laZDw07Qm713Cv5mhpikNVHDOCoHfo6S52RN6zaDb_egDj7GAIOcgrEqbCUlcteVzF3Jh64y-_ognTsL_T_yUE4GTvfAnRlh-3-T_Lxa_VUW-4SJCe4fEyr8klzkFeWPyzNJrlb0S311KTn7A2bDsb4</recordid><startdate>20070130</startdate><enddate>20070130</enddate><creator>Jurečka, Petr</creator><creator>Černý, Jiří</creator><creator>Hobza, Pavel</creator><creator>Salahub, Dennis R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070130</creationdate><title>Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations</title><author>Jurečka, Petr ; Černý, Jiří ; Hobza, Pavel ; Salahub, Dennis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3610-f92112123dfdfec752141ef497bd96908ab157318373326b3e77e260b7b4c1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>density functional theory</topic><topic>dispersion interaction</topic><topic>empirical corrections</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Chemical</topic><topic>Organic Chemicals - chemistry</topic><topic>Quantum Theory</topic><topic>Thermodynamics</topic><topic>van der Waals complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurečka, Petr</creatorcontrib><creatorcontrib>Černý, Jiří</creatorcontrib><creatorcontrib>Hobza, Pavel</creatorcontrib><creatorcontrib>Salahub, Dennis R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurečka, Petr</au><au>Černý, Jiří</au><au>Hobza, Pavel</au><au>Salahub, Dennis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2007-01-30</date><risdate>2007</risdate><volume>28</volume><issue>2</issue><spage>555</spage><epage>569</epage><pages>555-569</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Standard density functional theory (DFT) is augmented with a damped empirical dispersion term. The damping function is optimized on a small, well balanced set of 22 van der Waals (vdW) complexes and verified on a validation set of 58 vdW complexes. Both sets contain biologically relevant molecules such as nucleic acid bases. Results are in remarkable agreement with reference high‐level wave function data based on the CCSD(T) method. The geometries obtained by full gradient optimization are in very good agreement with the best available theoretical reference. In terms of the standard deviation and average errors, results including the empirical dispersion term are clearly superior to all pure density functionals investigated—B‐LYP, B3‐LYP, PBE, TPSS, TPSSh, and BH‐LYP—and even surpass the MP2/cc‐pVTZ method. The combination of empirical dispersion with the TPSS functional performs remarkably well. The most critical part of the empirical dispersion approach is the damping function. The damping parameters should be optimized for each density functional/basis set combination separately. To keep the method simple, we optimized mainly a single factor, sR, scaling globally the vdW radii. For good results, a basis set of at least triple‐ζ quality is required and diffuse functions are recommended, since the basis set superposition error seriously deteriorates the results. On average, the dispersion contribution to the interaction energy missing in the DFT functionals examined here is about 15 and 100% for the hydrogen‐bonded and stacked complexes considered, respectively. © 2006 Wiley Periodicals, Inc. J Comput Chem 28: 555–569, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17186489</pmid><doi>10.1002/jcc.20570</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2007-01, Vol.28 (2), p.555-569
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_68375159
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects density functional theory
dispersion interaction
empirical corrections
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Models, Chemical
Organic Chemicals - chemistry
Quantum Theory
Thermodynamics
van der Waals complexes
title Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20functional%20theory%20augmented%20with%20an%20empirical%20dispersion%20term.%20Interaction%20energies%20and%20geometries%20of%2080%20noncovalent%20complexes%20compared%20with%20ab%20initio%20quantum%20mechanics%20calculations&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Jure%C4%8Dka,%20Petr&rft.date=2007-01-30&rft.volume=28&rft.issue=2&rft.spage=555&rft.epage=569&rft.pages=555-569&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.20570&rft_dat=%3Cproquest_cross%3E68375159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68375159&rft_id=info:pmid/17186489&rfr_iscdi=true