On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles
Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely,...
Gespeichert in:
Veröffentlicht in: | Nano letters 2007-10, Vol.7 (10), p.3157-3164 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3164 |
---|---|
container_issue | 10 |
container_start_page | 3157 |
container_title | Nano letters |
container_volume | 7 |
creator | Pons, Thomas Medintz, Igor L Sapsford, Kim E Higashiya, Seiichiro Grimes, Amy F English, Doug S Mattoussi, Hedi |
description | Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs. |
doi_str_mv | 10.1021/nl071729+ |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68374305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68374305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMotlYPfgHJQUWQ1ST7N0epWoViK-rVJZtN7JZsUpMs2G9vpKs9eJoH85uZNw-AY4yuMCL4WiuU45zQyx0wxGmMooxSsvuni2QADpxbIoRonKJ9MMB5kaQoy4bgfaahXwj43AnNF43-gEbCF9E23Oi6497Y0GLady28NR7OF8Yb1bWNFo6HCQGrNZxb89W0TMGJUTV8YtqsmPUNV8Idgj3JlBNHfR2Bt_u71_FDNJ1NHsc304glKPORQBUPDxS8QhXmVAqKMyopTjPJWc3qishgOKskLqQoOElxFbM45jkviKiDHIHzzd6VNZ-dcL5sm2BQKaaF6VyZFXGexCgN4MUG5NY4Z4UsVzZ4t-sSo_InzPI3zICe9Du7qhX1FuzDC8BZDzDHmZKWad64LUcJKuKUBO50wzHuyqXprA5R_L_3DfqsiM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68374305</pqid></control><display><type>article</type><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</creator><creatorcontrib>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</creatorcontrib><description>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl071729+</identifier><identifier>PMID: 17845066</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fluorescence Resonance Energy Transfer - methods ; Gold - chemistry ; Luminescent Measurements - methods ; Materials science ; Materials Testing ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Quantum Dots ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors</subject><ispartof>Nano letters, 2007-10, Vol.7 (10), p.3157-3164</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</citedby><cites>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl071729+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl071729+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19208352$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17845066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Sapsford, Kim E</creatorcontrib><creatorcontrib>Higashiya, Seiichiro</creatorcontrib><creatorcontrib>Grimes, Amy F</creatorcontrib><creatorcontrib>English, Doug S</creatorcontrib><creatorcontrib>Mattoussi, Hedi</creatorcontrib><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Gold - chemistry</subject><subject>Luminescent Measurements - methods</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum Dots</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9LAzEQxYMotlYPfgHJQUWQ1ST7N0epWoViK-rVJZtN7JZsUpMs2G9vpKs9eJoH85uZNw-AY4yuMCL4WiuU45zQyx0wxGmMooxSsvuni2QADpxbIoRonKJ9MMB5kaQoy4bgfaahXwj43AnNF43-gEbCF9E23Oi6497Y0GLady28NR7OF8Yb1bWNFo6HCQGrNZxb89W0TMGJUTV8YtqsmPUNV8Idgj3JlBNHfR2Bt_u71_FDNJ1NHsc304glKPORQBUPDxS8QhXmVAqKMyopTjPJWc3qishgOKskLqQoOElxFbM45jkviKiDHIHzzd6VNZ-dcL5sm2BQKaaF6VyZFXGexCgN4MUG5NY4Z4UsVzZ4t-sSo_InzPI3zICe9Du7qhX1FuzDC8BZDzDHmZKWad64LUcJKuKUBO50wzHuyqXprA5R_L_3DfqsiM0</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Pons, Thomas</creator><creator>Medintz, Igor L</creator><creator>Sapsford, Kim E</creator><creator>Higashiya, Seiichiro</creator><creator>Grimes, Amy F</creator><creator>English, Doug S</creator><creator>Mattoussi, Hedi</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><author>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Gold - chemistry</topic><topic>Luminescent Measurements - methods</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum Dots</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Sapsford, Kim E</creatorcontrib><creatorcontrib>Higashiya, Seiichiro</creatorcontrib><creatorcontrib>Grimes, Amy F</creatorcontrib><creatorcontrib>English, Doug S</creatorcontrib><creatorcontrib>Mattoussi, Hedi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pons, Thomas</au><au>Medintz, Igor L</au><au>Sapsford, Kim E</au><au>Higashiya, Seiichiro</au><au>Grimes, Amy F</au><au>English, Doug S</au><au>Mattoussi, Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>7</volume><issue>10</issue><spage>3157</spage><epage>3164</epage><pages>3157-3164</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17845066</pmid><doi>10.1021/nl071729+</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2007-10, Vol.7 (10), p.3157-3164 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_68374305 |
source | MEDLINE; American Chemical Society Journals |
subjects | Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Fluorescence Resonance Energy Transfer - methods Gold - chemistry Luminescent Measurements - methods Materials science Materials Testing Molecular electronics, nanoelectronics Nanocrystalline materials Nanoparticles - chemistry Nanoparticles - ultrastructure Nanoscale materials and structures: fabrication and characterization Nanotechnology - methods Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Particle Size Physics Quantum Dots Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Semiconductors |
title | On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Quenching%20of%20Semiconductor%20Quantum%20Dot%20Photoluminescence%20by%20Proximal%20Gold%20Nanoparticles&rft.jtitle=Nano%20letters&rft.au=Pons,%20Thomas&rft.date=2007-10-01&rft.volume=7&rft.issue=10&rft.spage=3157&rft.epage=3164&rft.pages=3157-3164&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl071729+&rft_dat=%3Cproquest_cross%3E68374305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68374305&rft_id=info:pmid/17845066&rfr_iscdi=true |