On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles

Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2007-10, Vol.7 (10), p.3157-3164
Hauptverfasser: Pons, Thomas, Medintz, Igor L, Sapsford, Kim E, Higashiya, Seiichiro, Grimes, Amy F, English, Doug S, Mattoussi, Hedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3164
container_issue 10
container_start_page 3157
container_title Nano letters
container_volume 7
creator Pons, Thomas
Medintz, Igor L
Sapsford, Kim E
Higashiya, Seiichiro
Grimes, Amy F
English, Doug S
Mattoussi, Hedi
description Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.
doi_str_mv 10.1021/nl071729+
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68374305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68374305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMotlYPfgHJQUWQ1ST7N0epWoViK-rVJZtN7JZsUpMs2G9vpKs9eJoH85uZNw-AY4yuMCL4WiuU45zQyx0wxGmMooxSsvuni2QADpxbIoRonKJ9MMB5kaQoy4bgfaahXwj43AnNF43-gEbCF9E23Oi6497Y0GLady28NR7OF8Yb1bWNFo6HCQGrNZxb89W0TMGJUTV8YtqsmPUNV8Idgj3JlBNHfR2Bt_u71_FDNJ1NHsc304glKPORQBUPDxS8QhXmVAqKMyopTjPJWc3qishgOKskLqQoOElxFbM45jkviKiDHIHzzd6VNZ-dcL5sm2BQKaaF6VyZFXGexCgN4MUG5NY4Z4UsVzZ4t-sSo_InzPI3zICe9Du7qhX1FuzDC8BZDzDHmZKWad64LUcJKuKUBO50wzHuyqXprA5R_L_3DfqsiM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68374305</pqid></control><display><type>article</type><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</creator><creatorcontrib>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</creatorcontrib><description>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl071729+</identifier><identifier>PMID: 17845066</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fluorescence Resonance Energy Transfer - methods ; Gold - chemistry ; Luminescent Measurements - methods ; Materials science ; Materials Testing ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanoscale materials and structures: fabrication and characterization ; Nanotechnology - methods ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Particle Size ; Physics ; Quantum Dots ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors</subject><ispartof>Nano letters, 2007-10, Vol.7 (10), p.3157-3164</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</citedby><cites>FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl071729+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl071729+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19208352$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17845066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Sapsford, Kim E</creatorcontrib><creatorcontrib>Higashiya, Seiichiro</creatorcontrib><creatorcontrib>Grimes, Amy F</creatorcontrib><creatorcontrib>English, Doug S</creatorcontrib><creatorcontrib>Mattoussi, Hedi</creatorcontrib><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</description><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Gold - chemistry</subject><subject>Luminescent Measurements - methods</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotechnology - methods</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum Dots</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkE9LAzEQxYMotlYPfgHJQUWQ1ST7N0epWoViK-rVJZtN7JZsUpMs2G9vpKs9eJoH85uZNw-AY4yuMCL4WiuU45zQyx0wxGmMooxSsvuni2QADpxbIoRonKJ9MMB5kaQoy4bgfaahXwj43AnNF43-gEbCF9E23Oi6497Y0GLady28NR7OF8Yb1bWNFo6HCQGrNZxb89W0TMGJUTV8YtqsmPUNV8Idgj3JlBNHfR2Bt_u71_FDNJ1NHsc304glKPORQBUPDxS8QhXmVAqKMyopTjPJWc3qishgOKskLqQoOElxFbM45jkviKiDHIHzzd6VNZ-dcL5sm2BQKaaF6VyZFXGexCgN4MUG5NY4Z4UsVzZ4t-sSo_InzPI3zICe9Du7qhX1FuzDC8BZDzDHmZKWad64LUcJKuKUBO50wzHuyqXprA5R_L_3DfqsiM0</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Pons, Thomas</creator><creator>Medintz, Igor L</creator><creator>Sapsford, Kim E</creator><creator>Higashiya, Seiichiro</creator><creator>Grimes, Amy F</creator><creator>English, Doug S</creator><creator>Mattoussi, Hedi</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</title><author>Pons, Thomas ; Medintz, Igor L ; Sapsford, Kim E ; Higashiya, Seiichiro ; Grimes, Amy F ; English, Doug S ; Mattoussi, Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-e0bc1728cb0b1c9fe9169f9156fcadadb2f8456bf18fe8c251b3a33c7c82ed3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Gold - chemistry</topic><topic>Luminescent Measurements - methods</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotechnology - methods</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum Dots</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pons, Thomas</creatorcontrib><creatorcontrib>Medintz, Igor L</creatorcontrib><creatorcontrib>Sapsford, Kim E</creatorcontrib><creatorcontrib>Higashiya, Seiichiro</creatorcontrib><creatorcontrib>Grimes, Amy F</creatorcontrib><creatorcontrib>English, Doug S</creatorcontrib><creatorcontrib>Mattoussi, Hedi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pons, Thomas</au><au>Medintz, Igor L</au><au>Sapsford, Kim E</au><au>Higashiya, Seiichiro</au><au>Grimes, Amy F</au><au>English, Doug S</au><au>Mattoussi, Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>7</volume><issue>10</issue><spage>3157</spage><epage>3164</epage><pages>3157-3164</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Luminescent quantum dots (QDs) were proven to be very effective fluorescence resonance energy transfer donors with an array of organic dye acceptors, and several fluorescence resonance energy transfer based biosensing assemblies utilizing QDs have been demonstrated in the past few years. Conversely, gold nanoparticles (Au-NPs) are known for their capacity to induce strong fluorescence quenching of conventional dye donors. Using a rigid variable-length polypeptide as a bifunctional biological linker, we monitor the photoluminescence quenching of CdSe−ZnS QDs by Au-NP acceptors arrayed around the QD surface, where the center-to-center separation distance was varied over a broad range of values (∼50−200 Å). We measure the Au-NP-induced quenching rates for such QD conjugates using steady-state and time-resolved fluorescence measurements and examine the results within the context of theoretical treatments based on the Förster dipole−dipole resonance energy transfer, dipole−metal particle energy transfer, and nanosurface energy transfer. Our results indicate that nonradiative quenching of the QD emission by proximal Au-NPs is due to long-distance dipole−metal interactions that extend significantly beyond the classical Förster range, in agreement with previous studies using organic dye−Au-NP donor−acceptor pairs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17845066</pmid><doi>10.1021/nl071729+</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2007-10, Vol.7 (10), p.3157-3164
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_68374305
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Fluorescence Resonance Energy Transfer - methods
Gold - chemistry
Luminescent Measurements - methods
Materials science
Materials Testing
Molecular electronics, nanoelectronics
Nanocrystalline materials
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanoscale materials and structures: fabrication and characterization
Nanotechnology - methods
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Particle Size
Physics
Quantum Dots
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
title On the Quenching of Semiconductor Quantum Dot Photoluminescence by Proximal Gold Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Quenching%20of%20Semiconductor%20Quantum%20Dot%20Photoluminescence%20by%20Proximal%20Gold%20Nanoparticles&rft.jtitle=Nano%20letters&rft.au=Pons,%20Thomas&rft.date=2007-10-01&rft.volume=7&rft.issue=10&rft.spage=3157&rft.epage=3164&rft.pages=3157-3164&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl071729+&rft_dat=%3Cproquest_cross%3E68374305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68374305&rft_id=info:pmid/17845066&rfr_iscdi=true