Nonaffine rubber elasticity for stiff polymer networks

We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906
Hauptverfasser: Heussinger, Claus, Schaefer, Boris, Frey, Erwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031906
container_issue 3 Pt 1
container_start_page 031906
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 76
creator Heussinger, Claus
Schaefer, Boris
Frey, Erwin
description We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.
doi_str_mv 10.1103/PhysRevE.76.031906
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68372640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68372640</sourcerecordid><originalsourceid>FETCH-LOGICAL-p139t-e2be1cf1745ce13bbcb0a20d9799042a5bc8f483d11f3b15d64396b1202ce7273</originalsourceid><addsrcrecordid>eNo1j0tLxDAUhbNQnHH0D7iQrtx1zM1tk2Ypw_iAQUV0XZL0Bqt9mbRK_70Djqvzwfk4cBi7AL4G4Hj9_D7HF_rerpVccwTN5RFbQo46RZXnC3Ya4wfnKLDITtgClEYuFF8y-dh3xvu6oyRM1lJIqDFxrF09zonvQ7Jn75Ohb-Z2X3Y0_vThM56xY2-aSOeHXLG32-3r5j7dPd09bG526QCox5SEJXAeVJY7ArTWWW4Er7TSmmfC5NYVPiuwAvBoIa9khlpaEFw4UkLhil397Q6h_5oojmVbR0dNYzrqp1jKApWQGd-Llwdxsi1V5RDq1oS5_H-Kv9IPVQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68372640</pqid></control><display><type>article</type><title>Nonaffine rubber elasticity for stiff polymer networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</creator><creatorcontrib>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</creatorcontrib><description>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</description><identifier>ISSN: 1539-3755</identifier><identifier>DOI: 10.1103/PhysRevE.76.031906</identifier><identifier>PMID: 17930270</identifier><language>eng</language><publisher>United States</publisher><subject>Actins - chemistry ; Anisotropy ; Computer Simulation ; Cross-Linking Reagents - chemistry ; Cytoskeleton - chemistry ; Elasticity ; Models, Chemical ; Polymers - chemistry ; Rheology ; Rubber - chemistry ; Stress, Mechanical ; Tensile Strength</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17930270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heussinger, Claus</creatorcontrib><creatorcontrib>Schaefer, Boris</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><title>Nonaffine rubber elasticity for stiff polymer networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</description><subject>Actins - chemistry</subject><subject>Anisotropy</subject><subject>Computer Simulation</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cytoskeleton - chemistry</subject><subject>Elasticity</subject><subject>Models, Chemical</subject><subject>Polymers - chemistry</subject><subject>Rheology</subject><subject>Rubber - chemistry</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><issn>1539-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j0tLxDAUhbNQnHH0D7iQrtx1zM1tk2Ypw_iAQUV0XZL0Bqt9mbRK_70Djqvzwfk4cBi7AL4G4Hj9_D7HF_rerpVccwTN5RFbQo46RZXnC3Ya4wfnKLDITtgClEYuFF8y-dh3xvu6oyRM1lJIqDFxrF09zonvQ7Jn75Ohb-Z2X3Y0_vThM56xY2-aSOeHXLG32-3r5j7dPd09bG526QCox5SEJXAeVJY7ArTWWW4Er7TSmmfC5NYVPiuwAvBoIa9khlpaEFw4UkLhil397Q6h_5oojmVbR0dNYzrqp1jKApWQGd-Llwdxsi1V5RDq1oS5_H-Kv9IPVQE</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Heussinger, Claus</creator><creator>Schaefer, Boris</creator><creator>Frey, Erwin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Nonaffine rubber elasticity for stiff polymer networks</title><author>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p139t-e2be1cf1745ce13bbcb0a20d9799042a5bc8f483d11f3b15d64396b1202ce7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - chemistry</topic><topic>Anisotropy</topic><topic>Computer Simulation</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cytoskeleton - chemistry</topic><topic>Elasticity</topic><topic>Models, Chemical</topic><topic>Polymers - chemistry</topic><topic>Rheology</topic><topic>Rubber - chemistry</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heussinger, Claus</creatorcontrib><creatorcontrib>Schaefer, Boris</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heussinger, Claus</au><au>Schaefer, Boris</au><au>Frey, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonaffine rubber elasticity for stiff polymer networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-09</date><risdate>2007</risdate><volume>76</volume><issue>3 Pt 1</issue><spage>031906</spage><epage>031906</epage><pages>031906-031906</pages><issn>1539-3755</issn><abstract>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</abstract><cop>United States</cop><pmid>17930270</pmid><doi>10.1103/PhysRevE.76.031906</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906
issn 1539-3755
language eng
recordid cdi_proquest_miscellaneous_68372640
source MEDLINE; American Physical Society Journals
subjects Actins - chemistry
Anisotropy
Computer Simulation
Cross-Linking Reagents - chemistry
Cytoskeleton - chemistry
Elasticity
Models, Chemical
Polymers - chemistry
Rheology
Rubber - chemistry
Stress, Mechanical
Tensile Strength
title Nonaffine rubber elasticity for stiff polymer networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonaffine%20rubber%20elasticity%20for%20stiff%20polymer%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Heussinger,%20Claus&rft.date=2007-09&rft.volume=76&rft.issue=3%20Pt%201&rft.spage=031906&rft.epage=031906&rft.pages=031906-031906&rft.issn=1539-3755&rft_id=info:doi/10.1103/PhysRevE.76.031906&rft_dat=%3Cproquest_pubme%3E68372640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68372640&rft_id=info:pmid/17930270&rfr_iscdi=true