Nonaffine rubber elasticity for stiff polymer networks
We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 031906 |
---|---|
container_issue | 3 Pt 1 |
container_start_page | 031906 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 76 |
creator | Heussinger, Claus Schaefer, Boris Frey, Erwin |
description | We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks. |
doi_str_mv | 10.1103/PhysRevE.76.031906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68372640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68372640</sourcerecordid><originalsourceid>FETCH-LOGICAL-p139t-e2be1cf1745ce13bbcb0a20d9799042a5bc8f483d11f3b15d64396b1202ce7273</originalsourceid><addsrcrecordid>eNo1j0tLxDAUhbNQnHH0D7iQrtx1zM1tk2Ypw_iAQUV0XZL0Bqt9mbRK_70Djqvzwfk4cBi7AL4G4Hj9_D7HF_rerpVccwTN5RFbQo46RZXnC3Ya4wfnKLDITtgClEYuFF8y-dh3xvu6oyRM1lJIqDFxrF09zonvQ7Jn75Ohb-Z2X3Y0_vThM56xY2-aSOeHXLG32-3r5j7dPd09bG526QCox5SEJXAeVJY7ArTWWW4Er7TSmmfC5NYVPiuwAvBoIa9khlpaEFw4UkLhil397Q6h_5oojmVbR0dNYzrqp1jKApWQGd-Llwdxsi1V5RDq1oS5_H-Kv9IPVQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68372640</pqid></control><display><type>article</type><title>Nonaffine rubber elasticity for stiff polymer networks</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</creator><creatorcontrib>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</creatorcontrib><description>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</description><identifier>ISSN: 1539-3755</identifier><identifier>DOI: 10.1103/PhysRevE.76.031906</identifier><identifier>PMID: 17930270</identifier><language>eng</language><publisher>United States</publisher><subject>Actins - chemistry ; Anisotropy ; Computer Simulation ; Cross-Linking Reagents - chemistry ; Cytoskeleton - chemistry ; Elasticity ; Models, Chemical ; Polymers - chemistry ; Rheology ; Rubber - chemistry ; Stress, Mechanical ; Tensile Strength</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17930270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heussinger, Claus</creatorcontrib><creatorcontrib>Schaefer, Boris</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><title>Nonaffine rubber elasticity for stiff polymer networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</description><subject>Actins - chemistry</subject><subject>Anisotropy</subject><subject>Computer Simulation</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Cytoskeleton - chemistry</subject><subject>Elasticity</subject><subject>Models, Chemical</subject><subject>Polymers - chemistry</subject><subject>Rheology</subject><subject>Rubber - chemistry</subject><subject>Stress, Mechanical</subject><subject>Tensile Strength</subject><issn>1539-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1j0tLxDAUhbNQnHH0D7iQrtx1zM1tk2Ypw_iAQUV0XZL0Bqt9mbRK_70Djqvzwfk4cBi7AL4G4Hj9_D7HF_rerpVccwTN5RFbQo46RZXnC3Ya4wfnKLDITtgClEYuFF8y-dh3xvu6oyRM1lJIqDFxrF09zonvQ7Jn75Ohb-Z2X3Y0_vThM56xY2-aSOeHXLG32-3r5j7dPd09bG526QCox5SEJXAeVJY7ArTWWW4Er7TSmmfC5NYVPiuwAvBoIa9khlpaEFw4UkLhil397Q6h_5oojmVbR0dNYzrqp1jKApWQGd-Llwdxsi1V5RDq1oS5_H-Kv9IPVQE</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Heussinger, Claus</creator><creator>Schaefer, Boris</creator><creator>Frey, Erwin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Nonaffine rubber elasticity for stiff polymer networks</title><author>Heussinger, Claus ; Schaefer, Boris ; Frey, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p139t-e2be1cf1745ce13bbcb0a20d9799042a5bc8f483d11f3b15d64396b1202ce7273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - chemistry</topic><topic>Anisotropy</topic><topic>Computer Simulation</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Cytoskeleton - chemistry</topic><topic>Elasticity</topic><topic>Models, Chemical</topic><topic>Polymers - chemistry</topic><topic>Rheology</topic><topic>Rubber - chemistry</topic><topic>Stress, Mechanical</topic><topic>Tensile Strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heussinger, Claus</creatorcontrib><creatorcontrib>Schaefer, Boris</creatorcontrib><creatorcontrib>Frey, Erwin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heussinger, Claus</au><au>Schaefer, Boris</au><au>Frey, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonaffine rubber elasticity for stiff polymer networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-09</date><risdate>2007</risdate><volume>76</volume><issue>3 Pt 1</issue><spage>031906</spage><epage>031906</epage><pages>031906-031906</pages><issn>1539-3755</issn><abstract>We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams, stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces ("stretching"). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of "floppy modes"-low-energy bending excitations that retain a high degree of nonaffinity. The length scale characterizing the emergent nonaffinity is given by the "fiber length" lf, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.</abstract><cop>United States</cop><pmid>17930270</pmid><doi>10.1103/PhysRevE.76.031906</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.031906-031906 |
issn | 1539-3755 |
language | eng |
recordid | cdi_proquest_miscellaneous_68372640 |
source | MEDLINE; American Physical Society Journals |
subjects | Actins - chemistry Anisotropy Computer Simulation Cross-Linking Reagents - chemistry Cytoskeleton - chemistry Elasticity Models, Chemical Polymers - chemistry Rheology Rubber - chemistry Stress, Mechanical Tensile Strength |
title | Nonaffine rubber elasticity for stiff polymer networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonaffine%20rubber%20elasticity%20for%20stiff%20polymer%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Heussinger,%20Claus&rft.date=2007-09&rft.volume=76&rft.issue=3%20Pt%201&rft.spage=031906&rft.epage=031906&rft.pages=031906-031906&rft.issn=1539-3755&rft_id=info:doi/10.1103/PhysRevE.76.031906&rft_dat=%3Cproquest_pubme%3E68372640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68372640&rft_id=info:pmid/17930270&rfr_iscdi=true |