Color Image Segmentation Based on Mean Shift and Normalized Cuts

In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2007-10, Vol.37 (5), p.1382-1389
Hauptverfasser: Tao, Wenbing, Jin, Hai, Zhang, Yimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 5
container_start_page 1382
container_title IEEE transactions on cybernetics
container_volume 37
creator Tao, Wenbing
Jin, Hai
Zhang, Yimin
description In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.
doi_str_mv 10.1109/TSMCB.2007.902249
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_68371783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4305291</ieee_id><sourcerecordid>880658503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agirs-PoAIUjzoqetM0zbJTS2-wMdh9x7S7FS79LE27UE_vVl3UfAgBDIwvxlI_owdIUwQQV3Mpk_Z9SQCEBMFURSrLTZGFWMIsYq2fQ2Sh3GMasT2nFsAgAIldtkIhYpSgXLMLrO2arvgoTavFEzptaamN33ZNsG1cTQPfPFEpgmmb2XRB6aZB89tV5uq_PTNbOjdAdspTOXocHPvs9ntzSy7Dx9f7h6yq8fQ8kT1oY2sPwokFjKZR6awAsjmCVeyICGLHA2CSFFxA2Ak5lbmEJORaW7RWL7Pztdrl137PpDrdV06S1VlGmoHp6WENJEJcC_P_pWp5AKFXMHTP3DRDl3jH6FlGqM3mHqEa2S71rmOCr3sytp0HxpBr0LQ3yHoVQh6HYKfOdksHvKa5r8Tm1_34HgNSiL6accckkgh_wIQgol3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864117816</pqid></control><display><type>article</type><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</creator><creatorcontrib>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</creatorcontrib><description>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2007.902249</identifier><identifier>PMID: 17926718</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Clustering algorithms ; Color ; Color image segmentation ; Colorimetry - methods ; Computational complexity ; graph partitioning ; Graphs ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Layout ; mean shift (MS) ; Noise reduction ; normalized cut (Ncut) ; Optimization methods ; Partitioning ; Partitioning algorithms ; Pattern Recognition, Automated - methods ; Pixel ; Pixels ; Reproducibility of Results ; Robustness ; Segmentation ; Sensitivity and Specificity ; Studies</subject><ispartof>IEEE transactions on cybernetics, 2007-10, Vol.37 (5), p.1382-1389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</citedby><cites>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4305291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4305291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17926718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Wenbing</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Color</subject><subject>Color image segmentation</subject><subject>Colorimetry - methods</subject><subject>Computational complexity</subject><subject>graph partitioning</subject><subject>Graphs</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>mean shift (MS)</subject><subject>Noise reduction</subject><subject>normalized cut (Ncut)</subject><subject>Optimization methods</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90UtLxDAQB_Agirs-PoAIUjzoqetM0zbJTS2-wMdh9x7S7FS79LE27UE_vVl3UfAgBDIwvxlI_owdIUwQQV3Mpk_Z9SQCEBMFURSrLTZGFWMIsYq2fQ2Sh3GMasT2nFsAgAIldtkIhYpSgXLMLrO2arvgoTavFEzptaamN33ZNsG1cTQPfPFEpgmmb2XRB6aZB89tV5uq_PTNbOjdAdspTOXocHPvs9ntzSy7Dx9f7h6yq8fQ8kT1oY2sPwokFjKZR6awAsjmCVeyICGLHA2CSFFxA2Ak5lbmEJORaW7RWL7Pztdrl137PpDrdV06S1VlGmoHp6WENJEJcC_P_pWp5AKFXMHTP3DRDl3jH6FlGqM3mHqEa2S71rmOCr3sytp0HxpBr0LQ3yHoVQh6HYKfOdksHvKa5r8Tm1_34HgNSiL6accckkgh_wIQgol3</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tao, Wenbing</creator><creator>Jin, Hai</creator><creator>Zhang, Yimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200710</creationdate><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><author>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Color</topic><topic>Color image segmentation</topic><topic>Colorimetry - methods</topic><topic>Computational complexity</topic><topic>graph partitioning</topic><topic>Graphs</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>mean shift (MS)</topic><topic>Noise reduction</topic><topic>normalized cut (Ncut)</topic><topic>Optimization methods</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Wenbing</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Wenbing</au><au>Jin, Hai</au><au>Zhang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Image Segmentation Based on Mean Shift and Normalized Cuts</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2007-10</date><risdate>2007</risdate><volume>37</volume><issue>5</issue><spage>1382</spage><epage>1389</epage><pages>1382-1389</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17926718</pmid><doi>10.1109/TSMCB.2007.902249</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2007-10, Vol.37 (5), p.1382-1389
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_68371783
source IEEE/IET Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Clustering
Clustering algorithms
Color
Color image segmentation
Colorimetry - methods
Computational complexity
graph partitioning
Graphs
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image segmentation
Layout
mean shift (MS)
Noise reduction
normalized cut (Ncut)
Optimization methods
Partitioning
Partitioning algorithms
Pattern Recognition, Automated - methods
Pixel
Pixels
Reproducibility of Results
Robustness
Segmentation
Sensitivity and Specificity
Studies
title Color Image Segmentation Based on Mean Shift and Normalized Cuts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Image%20Segmentation%20Based%20on%20Mean%20Shift%20and%20Normalized%20Cuts&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Tao,%20Wenbing&rft.date=2007-10&rft.volume=37&rft.issue=5&rft.spage=1382&rft.epage=1389&rft.pages=1382-1389&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2007.902249&rft_dat=%3Cproquest_RIE%3E880658503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864117816&rft_id=info:pmid/17926718&rft_ieee_id=4305291&rfr_iscdi=true