Color Image Segmentation Based on Mean Shift and Normalized Cuts
In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2007-10, Vol.37 (5), p.1382-1389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1389 |
---|---|
container_issue | 5 |
container_start_page | 1382 |
container_title | IEEE transactions on cybernetics |
container_volume | 37 |
creator | Tao, Wenbing Jin, Hai Zhang, Yimin |
description | In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images. |
doi_str_mv | 10.1109/TSMCB.2007.902249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_68371783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4305291</ieee_id><sourcerecordid>880658503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_Agirs-PoAIUjzoqetM0zbJTS2-wMdh9x7S7FS79LE27UE_vVl3UfAgBDIwvxlI_owdIUwQQV3Mpk_Z9SQCEBMFURSrLTZGFWMIsYq2fQ2Sh3GMasT2nFsAgAIldtkIhYpSgXLMLrO2arvgoTavFEzptaamN33ZNsG1cTQPfPFEpgmmb2XRB6aZB89tV5uq_PTNbOjdAdspTOXocHPvs9ntzSy7Dx9f7h6yq8fQ8kT1oY2sPwokFjKZR6awAsjmCVeyICGLHA2CSFFxA2Ak5lbmEJORaW7RWL7Pztdrl137PpDrdV06S1VlGmoHp6WENJEJcC_P_pWp5AKFXMHTP3DRDl3jH6FlGqM3mHqEa2S71rmOCr3sytp0HxpBr0LQ3yHoVQh6HYKfOdksHvKa5r8Tm1_34HgNSiL6accckkgh_wIQgol3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864117816</pqid></control><display><type>article</type><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</creator><creatorcontrib>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</creatorcontrib><description>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2007.902249</identifier><identifier>PMID: 17926718</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Clustering algorithms ; Color ; Color image segmentation ; Colorimetry - methods ; Computational complexity ; graph partitioning ; Graphs ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image segmentation ; Layout ; mean shift (MS) ; Noise reduction ; normalized cut (Ncut) ; Optimization methods ; Partitioning ; Partitioning algorithms ; Pattern Recognition, Automated - methods ; Pixel ; Pixels ; Reproducibility of Results ; Robustness ; Segmentation ; Sensitivity and Specificity ; Studies</subject><ispartof>IEEE transactions on cybernetics, 2007-10, Vol.37 (5), p.1382-1389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</citedby><cites>FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4305291$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4305291$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17926718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Wenbing</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Color</subject><subject>Color image segmentation</subject><subject>Colorimetry - methods</subject><subject>Computational complexity</subject><subject>graph partitioning</subject><subject>Graphs</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>mean shift (MS)</subject><subject>Noise reduction</subject><subject>normalized cut (Ncut)</subject><subject>Optimization methods</subject><subject>Partitioning</subject><subject>Partitioning algorithms</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90UtLxDAQB_Agirs-PoAIUjzoqetM0zbJTS2-wMdh9x7S7FS79LE27UE_vVl3UfAgBDIwvxlI_owdIUwQQV3Mpk_Z9SQCEBMFURSrLTZGFWMIsYq2fQ2Sh3GMasT2nFsAgAIldtkIhYpSgXLMLrO2arvgoTavFEzptaamN33ZNsG1cTQPfPFEpgmmb2XRB6aZB89tV5uq_PTNbOjdAdspTOXocHPvs9ntzSy7Dx9f7h6yq8fQ8kT1oY2sPwokFjKZR6awAsjmCVeyICGLHA2CSFFxA2Ak5lbmEJORaW7RWL7Pztdrl137PpDrdV06S1VlGmoHp6WENJEJcC_P_pWp5AKFXMHTP3DRDl3jH6FlGqM3mHqEa2S71rmOCr3sytp0HxpBr0LQ3yHoVQh6HYKfOdksHvKa5r8Tm1_34HgNSiL6accckkgh_wIQgol3</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Tao, Wenbing</creator><creator>Jin, Hai</creator><creator>Zhang, Yimin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>200710</creationdate><title>Color Image Segmentation Based on Mean Shift and Normalized Cuts</title><author>Tao, Wenbing ; Jin, Hai ; Zhang, Yimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c2cc2c9081f85d2afc70ecb5398fe78fb1a1076193a00a81bc8b04ea86bc1ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Color</topic><topic>Color image segmentation</topic><topic>Colorimetry - methods</topic><topic>Computational complexity</topic><topic>graph partitioning</topic><topic>Graphs</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>mean shift (MS)</topic><topic>Noise reduction</topic><topic>normalized cut (Ncut)</topic><topic>Optimization methods</topic><topic>Partitioning</topic><topic>Partitioning algorithms</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Wenbing</creatorcontrib><creatorcontrib>Jin, Hai</creatorcontrib><creatorcontrib>Zhang, Yimin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Wenbing</au><au>Jin, Hai</au><au>Zhang, Yimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Image Segmentation Based on Mean Shift and Normalized Cuts</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2007-10</date><risdate>2007</risdate><volume>37</volume><issue>5</issue><spage>1382</spage><epage>1389</epage><pages>1382-1389</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this correspondence, we develop a novel approach that provides effective and robust segmentation of color images. By incorporating the advantages of the mean shift (MS) segmentation and the normalized cut (Ncut) partitioning methods, the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing. It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image. The segmented regions are then represented by using the graph structures, and the Ncut method is applied to perform globally optimized clustering. Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with significant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels. In addition, the image clustering using the segmented regions, instead of the image pixels, also reduces the sensitivity to noise and results in enhanced image segmentation performance. Furthermore, to avoid some inappropriate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region. The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17926718</pmid><doi>10.1109/TSMCB.2007.902249</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2007-10, Vol.37 (5), p.1382-1389 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_68371783 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence Clustering Clustering algorithms Color Color image segmentation Colorimetry - methods Computational complexity graph partitioning Graphs Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image segmentation Layout mean shift (MS) Noise reduction normalized cut (Ncut) Optimization methods Partitioning Partitioning algorithms Pattern Recognition, Automated - methods Pixel Pixels Reproducibility of Results Robustness Segmentation Sensitivity and Specificity Studies |
title | Color Image Segmentation Based on Mean Shift and Normalized Cuts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T14%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Image%20Segmentation%20Based%20on%20Mean%20Shift%20and%20Normalized%20Cuts&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Tao,%20Wenbing&rft.date=2007-10&rft.volume=37&rft.issue=5&rft.spage=1382&rft.epage=1389&rft.pages=1382-1389&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2007.902249&rft_dat=%3Cproquest_RIE%3E880658503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864117816&rft_id=info:pmid/17926718&rft_ieee_id=4305291&rfr_iscdi=true |