Fractional diffusion equation in a confined region: surface effects and exact solutions
Surface effects on a diffusion process governed by a fractional diffusion equation in a confined region with spatial and time dependent boundary conditions are investigated. First, we consider the one-dimensional case with the boundary conditions rho(0,t)=Phi0(t) and rho(a,t)=Phia(t). Subsequently,...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.032102-032102, Article 032102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 032102 |
---|---|
container_issue | 3 Pt 1 |
container_start_page | 032102 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 76 |
creator | Rossato, R Lenzi, M K Evangelista, L R Lenzi, E K |
description | Surface effects on a diffusion process governed by a fractional diffusion equation in a confined region with spatial and time dependent boundary conditions are investigated. First, we consider the one-dimensional case with the boundary conditions rho(0,t)=Phi0(t) and rho(a,t)=Phia(t). Subsequently, the two-dimensional case in the cylindrical symmetry with rho(a,theta,t)=Phia(theta,t) and rho(b,theta,t)=Phib(theta,t) is investigated. For these cases, we also obtain exact solutions for an arbitrary initial condition by using the Green's function approach. |
doi_str_mv | 10.1103/PhysRevE.76.032102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68369840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68369840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-ff711416f91f8208cf4fbe50ad7011025bcd8f2d36244e5c3b4ac871de3c51333</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMobk7_gA-SJ986k9ymaX2TsakwUETxMaTJjVa6dktWcf_elk18uofDOQfuR8glZ1POGdw8f-7iC37PpyqbMhCciSMy5lKyRIDKjgcNRQJKyhE5i_GL9SHI01My4qoAJgo-Ju-LYOy2ahtTU1d538VeU9x0ZjBp1VBDbdv4qkFHA3705i2NXfDGIkXv0W4jNY2j-NPv0NjW3VCM5-TEmzrixeFOyNti_jp7SJZP94-zu2VigfFt4r3iPOWZL7jPBcutT32JkhmnWP-jkKV1uRcOMpGmKC2UqbG54g7BSg4AE3K9312HdtNh3OpVFS3WtWmw7aLOcsiKPGV9UOyDNrQxBvR6HaqVCTvNmR5w6j-cWmV6j7MvXR3Wu3KF7r9y4Ae_-ftzOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68369840</pqid></control><display><type>article</type><title>Fractional diffusion equation in a confined region: surface effects and exact solutions</title><source>American Physical Society Journals</source><creator>Rossato, R ; Lenzi, M K ; Evangelista, L R ; Lenzi, E K</creator><creatorcontrib>Rossato, R ; Lenzi, M K ; Evangelista, L R ; Lenzi, E K</creatorcontrib><description>Surface effects on a diffusion process governed by a fractional diffusion equation in a confined region with spatial and time dependent boundary conditions are investigated. First, we consider the one-dimensional case with the boundary conditions rho(0,t)=Phi0(t) and rho(a,t)=Phia(t). Subsequently, the two-dimensional case in the cylindrical symmetry with rho(a,theta,t)=Phia(theta,t) and rho(b,theta,t)=Phib(theta,t) is investigated. For these cases, we also obtain exact solutions for an arbitrary initial condition by using the Green's function approach.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.76.032102</identifier><identifier>PMID: 17930291</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.032102-032102, Article 032102</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-ff711416f91f8208cf4fbe50ad7011025bcd8f2d36244e5c3b4ac871de3c51333</citedby><cites>FETCH-LOGICAL-c301t-ff711416f91f8208cf4fbe50ad7011025bcd8f2d36244e5c3b4ac871de3c51333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17930291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossato, R</creatorcontrib><creatorcontrib>Lenzi, M K</creatorcontrib><creatorcontrib>Evangelista, L R</creatorcontrib><creatorcontrib>Lenzi, E K</creatorcontrib><title>Fractional diffusion equation in a confined region: surface effects and exact solutions</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Surface effects on a diffusion process governed by a fractional diffusion equation in a confined region with spatial and time dependent boundary conditions are investigated. First, we consider the one-dimensional case with the boundary conditions rho(0,t)=Phi0(t) and rho(a,t)=Phia(t). Subsequently, the two-dimensional case in the cylindrical symmetry with rho(a,theta,t)=Phia(theta,t) and rho(b,theta,t)=Phib(theta,t) is investigated. For these cases, we also obtain exact solutions for an arbitrary initial condition by using the Green's function approach.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMobk7_gA-SJ986k9ymaX2TsakwUETxMaTJjVa6dktWcf_elk18uofDOQfuR8glZ1POGdw8f-7iC37PpyqbMhCciSMy5lKyRIDKjgcNRQJKyhE5i_GL9SHI01My4qoAJgo-Ju-LYOy2ahtTU1d538VeU9x0ZjBp1VBDbdv4qkFHA3705i2NXfDGIkXv0W4jNY2j-NPv0NjW3VCM5-TEmzrixeFOyNti_jp7SJZP94-zu2VigfFt4r3iPOWZL7jPBcutT32JkhmnWP-jkKV1uRcOMpGmKC2UqbG54g7BSg4AE3K9312HdtNh3OpVFS3WtWmw7aLOcsiKPGV9UOyDNrQxBvR6HaqVCTvNmR5w6j-cWmV6j7MvXR3Wu3KF7r9y4Ae_-ftzOw</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Rossato, R</creator><creator>Lenzi, M K</creator><creator>Evangelista, L R</creator><creator>Lenzi, E K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Fractional diffusion equation in a confined region: surface effects and exact solutions</title><author>Rossato, R ; Lenzi, M K ; Evangelista, L R ; Lenzi, E K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-ff711416f91f8208cf4fbe50ad7011025bcd8f2d36244e5c3b4ac871de3c51333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rossato, R</creatorcontrib><creatorcontrib>Lenzi, M K</creatorcontrib><creatorcontrib>Evangelista, L R</creatorcontrib><creatorcontrib>Lenzi, E K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossato, R</au><au>Lenzi, M K</au><au>Evangelista, L R</au><au>Lenzi, E K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional diffusion equation in a confined region: surface effects and exact solutions</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>76</volume><issue>3 Pt 1</issue><spage>032102</spage><epage>032102</epage><pages>032102-032102</pages><artnum>032102</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Surface effects on a diffusion process governed by a fractional diffusion equation in a confined region with spatial and time dependent boundary conditions are investigated. First, we consider the one-dimensional case with the boundary conditions rho(0,t)=Phi0(t) and rho(a,t)=Phia(t). Subsequently, the two-dimensional case in the cylindrical symmetry with rho(a,theta,t)=Phia(theta,t) and rho(b,theta,t)=Phib(theta,t) is investigated. For these cases, we also obtain exact solutions for an arbitrary initial condition by using the Green's function approach.</abstract><cop>United States</cop><pmid>17930291</pmid><doi>10.1103/PhysRevE.76.032102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-09, Vol.76 (3 Pt 1), p.032102-032102, Article 032102 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_68369840 |
source | American Physical Society Journals |
title | Fractional diffusion equation in a confined region: surface effects and exact solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A57%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20diffusion%20equation%20in%20a%20confined%20region:%20surface%20effects%20and%20exact%20solutions&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Rossato,%20R&rft.date=2007-09-01&rft.volume=76&rft.issue=3%20Pt%201&rft.spage=032102&rft.epage=032102&rft.pages=032102-032102&rft.artnum=032102&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.76.032102&rft_dat=%3Cproquest_cross%3E68369840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68369840&rft_id=info:pmid/17930291&rfr_iscdi=true |