Heterogeneous meshing and biomechanical modeling of human spine

Abstract We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2007-03, Vol.29 (2), p.277-290
Hauptverfasser: Teo, J.C.M, Chui, C.K, Wang, Z.L, Ong, S.H, Yan, C.H, Wang, S.C, Wong, H.K, Teoh, S.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 2
container_start_page 277
container_title Medical engineering & physics
container_volume 29
creator Teo, J.C.M
Chui, C.K
Wang, Z.L
Ong, S.H
Yan, C.H
Wang, S.C
Wong, H.K
Teoh, S.H
description Abstract We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements suitable for deformation and other finite-element analysis using ABAQUS . The mesh generation solution accepts segmented radiological slices as input, and outputs three-dimensional (3D) volumetric finite element meshes that are ABAQUS compliant. The proposed mesh generation method first uses a grid plane to divide the contours of the anatomical boundaries and its inclusions into discrete meshes. A grid frame is then built to connect the grid planes between any two adjacent planes using a novel scheme. The meshes produced consist of brick elements in the interior of the contours and with tetrahedral and wedge elements at the boundaries. The nodal points are classified according to their materials and hence, elements can be assigned different properties. The resultant spine model comprises a detailed model of the 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, and S1. Each of the vertebrae and intervertebral disc has between 1200 and 6000 elements, and approximately 1200 elements, respectively. The accuracy of the resultant VHD™ finite element spine model was good based on visual comparison of volume-rendered images of the original CT data, and has been used in a computational analysis involving needle insertion and static deformation. We also compared the mesh generated using our method against two automatically generated models; one consists of purely tetrahedral elements and the other hexahedral elements.
doi_str_mv 10.1016/j.medengphy.2006.02.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68363021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135045330600049X</els_id><sourcerecordid>19592322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-869bc5152ef800089f9abb87303a17f73c7120f1f4b2e3ed5abe0e1b37e9b3683</originalsourceid><addsrcrecordid>eNqNkUtr3DAURkVpaB7tX2i86s7ulWTL9qYhDHkUAlkkge6EJF_PaGpLE2kcmH8fOTM00E27koTOfXA-Qs4pFBSo-L4uRuzQLTerXcEARAGsAMo-kBPa1DwvgcPHdOcV5GXF-TE5jXENAGUp-CdyTIWo2_Q4IRe3uMXgl-jQTzEbMa6sW2bKdZm2fkSzUs4aNWSj73CYv3yfraZRuSxurMPP5KhXQ8Qvh_OMPF1fPS5u87v7m5-Ly7vclFW1zRvRalPRimHfpDWatm-V1mlV4IrWfc1NTRn0tC81Q45dpTQCUs1rbDUXDT8j3_Z9N8E_Txi3crTR4DCot8VlQgQHRv8J0rZqGWcsgfUeNMHHGLCXm2BHFXaSgpwly7X8I1nOkiUwmSSnyq-HEZNOxHvdwWoCLvcAJiMvFoOMxqIz2NmAZis7b_9jyI-_epikf47iN-4wrv0UXBIuqYypQD7MWc9Rg5hjbn_xV_fqpng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19592322</pqid></control><display><type>article</type><title>Heterogeneous meshing and biomechanical modeling of human spine</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Teo, J.C.M ; Chui, C.K ; Wang, Z.L ; Ong, S.H ; Yan, C.H ; Wang, S.C ; Wong, H.K ; Teoh, S.H</creator><creatorcontrib>Teo, J.C.M ; Chui, C.K ; Wang, Z.L ; Ong, S.H ; Yan, C.H ; Wang, S.C ; Wong, H.K ; Teoh, S.H</creatorcontrib><description>Abstract We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements suitable for deformation and other finite-element analysis using ABAQUS . The mesh generation solution accepts segmented radiological slices as input, and outputs three-dimensional (3D) volumetric finite element meshes that are ABAQUS compliant. The proposed mesh generation method first uses a grid plane to divide the contours of the anatomical boundaries and its inclusions into discrete meshes. A grid frame is then built to connect the grid planes between any two adjacent planes using a novel scheme. The meshes produced consist of brick elements in the interior of the contours and with tetrahedral and wedge elements at the boundaries. The nodal points are classified according to their materials and hence, elements can be assigned different properties. The resultant spine model comprises a detailed model of the 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, and S1. Each of the vertebrae and intervertebral disc has between 1200 and 6000 elements, and approximately 1200 elements, respectively. The accuracy of the resultant VHD™ finite element spine model was good based on visual comparison of volume-rendered images of the original CT data, and has been used in a computational analysis involving needle insertion and static deformation. We also compared the mesh generated using our method against two automatically generated models; one consists of purely tetrahedral elements and the other hexahedral elements.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2006.02.012</identifier><identifier>PMID: 16679044</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Biomechanical Phenomena - methods ; Computer Simulation ; Elasticity ; Finite Element Analysis ; Finite element method ; Humans ; Male ; Mesh generation ; Modeling ; Models, Biological ; Radiology ; Spine - anatomy &amp; histology ; Spine - physiology ; Stress, Mechanical</subject><ispartof>Medical engineering &amp; physics, 2007-03, Vol.29 (2), p.277-290</ispartof><rights>IPEM</rights><rights>2006 IPEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-869bc5152ef800089f9abb87303a17f73c7120f1f4b2e3ed5abe0e1b37e9b3683</citedby><cites>FETCH-LOGICAL-c455t-869bc5152ef800089f9abb87303a17f73c7120f1f4b2e3ed5abe0e1b37e9b3683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.medengphy.2006.02.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16679044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teo, J.C.M</creatorcontrib><creatorcontrib>Chui, C.K</creatorcontrib><creatorcontrib>Wang, Z.L</creatorcontrib><creatorcontrib>Ong, S.H</creatorcontrib><creatorcontrib>Yan, C.H</creatorcontrib><creatorcontrib>Wang, S.C</creatorcontrib><creatorcontrib>Wong, H.K</creatorcontrib><creatorcontrib>Teoh, S.H</creatorcontrib><title>Heterogeneous meshing and biomechanical modeling of human spine</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>Abstract We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements suitable for deformation and other finite-element analysis using ABAQUS . The mesh generation solution accepts segmented radiological slices as input, and outputs three-dimensional (3D) volumetric finite element meshes that are ABAQUS compliant. The proposed mesh generation method first uses a grid plane to divide the contours of the anatomical boundaries and its inclusions into discrete meshes. A grid frame is then built to connect the grid planes between any two adjacent planes using a novel scheme. The meshes produced consist of brick elements in the interior of the contours and with tetrahedral and wedge elements at the boundaries. The nodal points are classified according to their materials and hence, elements can be assigned different properties. The resultant spine model comprises a detailed model of the 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, and S1. Each of the vertebrae and intervertebral disc has between 1200 and 6000 elements, and approximately 1200 elements, respectively. The accuracy of the resultant VHD™ finite element spine model was good based on visual comparison of volume-rendered images of the original CT data, and has been used in a computational analysis involving needle insertion and static deformation. We also compared the mesh generated using our method against two automatically generated models; one consists of purely tetrahedral elements and the other hexahedral elements.</description><subject>Adult</subject><subject>Biomechanical Phenomena - methods</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Male</subject><subject>Mesh generation</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>Radiology</subject><subject>Spine - anatomy &amp; histology</subject><subject>Spine - physiology</subject><subject>Stress, Mechanical</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtr3DAURkVpaB7tX2i86s7ulWTL9qYhDHkUAlkkge6EJF_PaGpLE2kcmH8fOTM00E27koTOfXA-Qs4pFBSo-L4uRuzQLTerXcEARAGsAMo-kBPa1DwvgcPHdOcV5GXF-TE5jXENAGUp-CdyTIWo2_Q4IRe3uMXgl-jQTzEbMa6sW2bKdZm2fkSzUs4aNWSj73CYv3yfraZRuSxurMPP5KhXQ8Qvh_OMPF1fPS5u87v7m5-Ly7vclFW1zRvRalPRimHfpDWatm-V1mlV4IrWfc1NTRn0tC81Q45dpTQCUs1rbDUXDT8j3_Z9N8E_Txi3crTR4DCot8VlQgQHRv8J0rZqGWcsgfUeNMHHGLCXm2BHFXaSgpwly7X8I1nOkiUwmSSnyq-HEZNOxHvdwWoCLvcAJiMvFoOMxqIz2NmAZis7b_9jyI-_epikf47iN-4wrv0UXBIuqYypQD7MWc9Rg5hjbn_xV_fqpng</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Teo, J.C.M</creator><creator>Chui, C.K</creator><creator>Wang, Z.L</creator><creator>Ong, S.H</creator><creator>Yan, C.H</creator><creator>Wang, S.C</creator><creator>Wong, H.K</creator><creator>Teoh, S.H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Heterogeneous meshing and biomechanical modeling of human spine</title><author>Teo, J.C.M ; Chui, C.K ; Wang, Z.L ; Ong, S.H ; Yan, C.H ; Wang, S.C ; Wong, H.K ; Teoh, S.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-869bc5152ef800089f9abb87303a17f73c7120f1f4b2e3ed5abe0e1b37e9b3683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Biomechanical Phenomena - methods</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Male</topic><topic>Mesh generation</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>Radiology</topic><topic>Spine - anatomy &amp; histology</topic><topic>Spine - physiology</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teo, J.C.M</creatorcontrib><creatorcontrib>Chui, C.K</creatorcontrib><creatorcontrib>Wang, Z.L</creatorcontrib><creatorcontrib>Ong, S.H</creatorcontrib><creatorcontrib>Yan, C.H</creatorcontrib><creatorcontrib>Wang, S.C</creatorcontrib><creatorcontrib>Wong, H.K</creatorcontrib><creatorcontrib>Teoh, S.H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teo, J.C.M</au><au>Chui, C.K</au><au>Wang, Z.L</au><au>Ong, S.H</au><au>Yan, C.H</au><au>Wang, S.C</au><au>Wong, H.K</au><au>Teoh, S.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous meshing and biomechanical modeling of human spine</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>29</volume><issue>2</issue><spage>277</spage><epage>290</epage><pages>277-290</pages><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>Abstract We aim to develop a patient-specific biomechanical model of human spine for the purpose of surgical training and planning. In this paper, we describe the development of a finite-element model of the spine from the VHD™ Male Data. The finite-element spine model comprises volumetric elements suitable for deformation and other finite-element analysis using ABAQUS . The mesh generation solution accepts segmented radiological slices as input, and outputs three-dimensional (3D) volumetric finite element meshes that are ABAQUS compliant. The proposed mesh generation method first uses a grid plane to divide the contours of the anatomical boundaries and its inclusions into discrete meshes. A grid frame is then built to connect the grid planes between any two adjacent planes using a novel scheme. The meshes produced consist of brick elements in the interior of the contours and with tetrahedral and wedge elements at the boundaries. The nodal points are classified according to their materials and hence, elements can be assigned different properties. The resultant spine model comprises a detailed model of the 7 cervical vertebrae, 12 thoracic vertebrae, 5 lumbar vertebrae, and S1. Each of the vertebrae and intervertebral disc has between 1200 and 6000 elements, and approximately 1200 elements, respectively. The accuracy of the resultant VHD™ finite element spine model was good based on visual comparison of volume-rendered images of the original CT data, and has been used in a computational analysis involving needle insertion and static deformation. We also compared the mesh generated using our method against two automatically generated models; one consists of purely tetrahedral elements and the other hexahedral elements.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>16679044</pmid><doi>10.1016/j.medengphy.2006.02.012</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2007-03, Vol.29 (2), p.277-290
issn 1350-4533
1873-4030
language eng
recordid cdi_proquest_miscellaneous_68363021
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult
Biomechanical Phenomena - methods
Computer Simulation
Elasticity
Finite Element Analysis
Finite element method
Humans
Male
Mesh generation
Modeling
Models, Biological
Radiology
Spine - anatomy & histology
Spine - physiology
Stress, Mechanical
title Heterogeneous meshing and biomechanical modeling of human spine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20meshing%20and%20biomechanical%20modeling%20of%20human%20spine&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Teo,%20J.C.M&rft.date=2007-03-01&rft.volume=29&rft.issue=2&rft.spage=277&rft.epage=290&rft.pages=277-290&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2006.02.012&rft_dat=%3Cproquest_cross%3E19592322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19592322&rft_id=info:pmid/16679044&rft_els_id=S135045330600049X&rfr_iscdi=true