Predicting postoperative nausea and vomiting with the application of an artificial neural network
Several medications have proved to be useful in preventing postoperative nausea and vomiting (PONV). However, routine antiemetic prophylaxis is not cost-effective. We evaluated the accuracy and discriminating power of an artificial neural network (ANN) to predict PONV. We analysed data from 1086 in-...
Gespeichert in:
Veröffentlicht in: | British journal of anaesthesia : BJA 2007-01, Vol.98 (1), p.60-65 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 65 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | British journal of anaesthesia : BJA |
container_volume | 98 |
creator | Peng, S.Y. Wu, K.C. Wang, J.J. Chuang, J.H. Peng, S.K. Lai, Y.H. |
description | Several medications have proved to be useful in preventing postoperative nausea and vomiting (PONV). However, routine antiemetic prophylaxis is not cost-effective. We evaluated the accuracy and discriminating power of an artificial neural network (ANN) to predict PONV.
We analysed data from 1086 in-patients who underwent various surgical procedures under general anaesthesia without antiemetic prophylaxis. Predictors used for ANN training were selected by computing the value of χ2 statistic and information gain with respect to PONV. The configuration of the ANN was chosen by using a software tool. Then the training of the ANN was performed based on data from a training set (n=656). Testing validation was performed with the remaining patients (n=430) whose outcome regarding PONV was unknown to the ANN. Area under the receiver operating characteristic (ROC) curves were used to quantify predictive performance. ANN performance was compared with those of the Naïve Bayesian classifier model, logistic regression model, simplified Apfel score and Koivuranta score.
ANN accuracy was 83.3%, sensitivity 77.9% and specificity 85.0% in predicting PONV. The areas under the ROC curve follow: ANN, 0.814 (0.774–0.850); Naïve Bayesian classifier, 0.570 (0.522–0.617); logistic regression, 0.669 (0.623–0.714); Koivuranta score, 0.626 (0.578–0.672); simplified Apfel score, 0.624 (0.576–0.670). ANN discriminatory power was superior to those of the other predicting models (P |
doi_str_mv | 10.1093/bja/ael282 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68361939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bja/ael282</oup_id><els_id>S0007091217352972</els_id><sourcerecordid>68361939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-8100c47f4d3621ae6fb7c74d97fcca4aabd2d8f8557df3a601b758da2a87e5593</originalsourceid><addsrcrecordid>eNp90d9rFDEQB_BFFHutvvgHyCLYB2Ftsj-S7GM9f5xSUKiC-BJmk4nNdW-zJtmr_vemt4sFEV9mXj7MDN_JsieUvKSkrc66LZwB9qUo72UrWnNaMM7p_WxFCOEFaWl5lB2HsCWE8rJtHmZHlBPWpLLK4JNHbVW0w_d8dCG6ET1Eu8d8gCkg5DDofO929iBubLzK4xXmMI69VQm6IXcmoRx8tMYqC30-4OQPLd44f_0oe2CgD_h46SfZl7dvPq83xcXHd-_X5xeFqlsaC0EJUTU3ta5YSQGZ6bjitW65UQpqgE6XWhjRNFybChihHW-EhhIEx6Zpq5PsdJ47evdjwhDlzgaFfQ8DuilIJipG2-oWPvsLbt3kh3SbpC3nrBRCJPRiRsq7EDwaOXq7A_9LUiJvU5cpdTmnnvDTZeLU7VDf0SXmBJ4vAIKC3ngYlA13TtSs5YfTFuem8f8Li9nZEPHnHwn-WjJe8UZuvn6Try_XH16VzUZeJl_PHtMD9ha9DMrioNLrPaootbP_WvMbnu26Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197762888</pqid></control><display><type>article</type><title>Predicting postoperative nausea and vomiting with the application of an artificial neural network</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Peng, S.Y. ; Wu, K.C. ; Wang, J.J. ; Chuang, J.H. ; Peng, S.K. ; Lai, Y.H.</creator><creatorcontrib>Peng, S.Y. ; Wu, K.C. ; Wang, J.J. ; Chuang, J.H. ; Peng, S.K. ; Lai, Y.H.</creatorcontrib><description>Several medications have proved to be useful in preventing postoperative nausea and vomiting (PONV). However, routine antiemetic prophylaxis is not cost-effective. We evaluated the accuracy and discriminating power of an artificial neural network (ANN) to predict PONV.
We analysed data from 1086 in-patients who underwent various surgical procedures under general anaesthesia without antiemetic prophylaxis. Predictors used for ANN training were selected by computing the value of χ2 statistic and information gain with respect to PONV. The configuration of the ANN was chosen by using a software tool. Then the training of the ANN was performed based on data from a training set (n=656). Testing validation was performed with the remaining patients (n=430) whose outcome regarding PONV was unknown to the ANN. Area under the receiver operating characteristic (ROC) curves were used to quantify predictive performance. ANN performance was compared with those of the Naïve Bayesian classifier model, logistic regression model, simplified Apfel score and Koivuranta score.
ANN accuracy was 83.3%, sensitivity 77.9% and specificity 85.0% in predicting PONV. The areas under the ROC curve follow: ANN, 0.814 (0.774–0.850); Naïve Bayesian classifier, 0.570 (0.522–0.617); logistic regression, 0.669 (0.623–0.714); Koivuranta score, 0.626 (0.578–0.672); simplified Apfel score, 0.624 (0.576–0.670). ANN discriminatory power was superior to those of the other predicting models (P<0.05).
The ANN provided the best predictive performance among all tested models.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1093/bja/ael282</identifier><identifier>PMID: 17065170</identifier><identifier>CODEN: BJANAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Anesthesia ; Anesthesia, General ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Antiemetics - administration & dosage ; artificial neural network ; Biological and medical sciences ; Epidemiologic Methods ; Female ; Humans ; Koivuranta score ; Male ; measurement techniques ; measurement techniques, artificial neural network, Naïve Bayesian classifier, Koivuranta score ; Medical sciences ; Middle Aged ; Naïve Bayesian classifier ; Neural Networks (Computer) ; Patient Selection ; PONV ; Postoperative Nausea and Vomiting - etiology ; Postoperative Nausea and Vomiting - prevention & control</subject><ispartof>British journal of anaesthesia : BJA, 2007-01, Vol.98 (1), p.60-65</ispartof><rights>2007 British Journal of Anaesthesia</rights><rights>The Board of Management and Trustees of the British Journal of Anaesthesia 2006. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2006</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Jan 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-8100c47f4d3621ae6fb7c74d97fcca4aabd2d8f8557df3a601b758da2a87e5593</citedby><cites>FETCH-LOGICAL-c491t-8100c47f4d3621ae6fb7c74d97fcca4aabd2d8f8557df3a601b758da2a87e5593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18469739$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17065170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, S.Y.</creatorcontrib><creatorcontrib>Wu, K.C.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><creatorcontrib>Chuang, J.H.</creatorcontrib><creatorcontrib>Peng, S.K.</creatorcontrib><creatorcontrib>Lai, Y.H.</creatorcontrib><title>Predicting postoperative nausea and vomiting with the application of an artificial neural network</title><title>British journal of anaesthesia : BJA</title><addtitle>Br J Anaesth</addtitle><description>Several medications have proved to be useful in preventing postoperative nausea and vomiting (PONV). However, routine antiemetic prophylaxis is not cost-effective. We evaluated the accuracy and discriminating power of an artificial neural network (ANN) to predict PONV.
We analysed data from 1086 in-patients who underwent various surgical procedures under general anaesthesia without antiemetic prophylaxis. Predictors used for ANN training were selected by computing the value of χ2 statistic and information gain with respect to PONV. The configuration of the ANN was chosen by using a software tool. Then the training of the ANN was performed based on data from a training set (n=656). Testing validation was performed with the remaining patients (n=430) whose outcome regarding PONV was unknown to the ANN. Area under the receiver operating characteristic (ROC) curves were used to quantify predictive performance. ANN performance was compared with those of the Naïve Bayesian classifier model, logistic regression model, simplified Apfel score and Koivuranta score.
ANN accuracy was 83.3%, sensitivity 77.9% and specificity 85.0% in predicting PONV. The areas under the ROC curve follow: ANN, 0.814 (0.774–0.850); Naïve Bayesian classifier, 0.570 (0.522–0.617); logistic regression, 0.669 (0.623–0.714); Koivuranta score, 0.626 (0.578–0.672); simplified Apfel score, 0.624 (0.576–0.670). ANN discriminatory power was superior to those of the other predicting models (P<0.05).
The ANN provided the best predictive performance among all tested models.</description><subject>Adult</subject><subject>Anesthesia</subject><subject>Anesthesia, General</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Antiemetics - administration & dosage</subject><subject>artificial neural network</subject><subject>Biological and medical sciences</subject><subject>Epidemiologic Methods</subject><subject>Female</subject><subject>Humans</subject><subject>Koivuranta score</subject><subject>Male</subject><subject>measurement techniques</subject><subject>measurement techniques, artificial neural network, Naïve Bayesian classifier, Koivuranta score</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Naïve Bayesian classifier</subject><subject>Neural Networks (Computer)</subject><subject>Patient Selection</subject><subject>PONV</subject><subject>Postoperative Nausea and Vomiting - etiology</subject><subject>Postoperative Nausea and Vomiting - prevention & control</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90d9rFDEQB_BFFHutvvgHyCLYB2Ftsj-S7GM9f5xSUKiC-BJmk4nNdW-zJtmr_vemt4sFEV9mXj7MDN_JsieUvKSkrc66LZwB9qUo72UrWnNaMM7p_WxFCOEFaWl5lB2HsCWE8rJtHmZHlBPWpLLK4JNHbVW0w_d8dCG6ET1Eu8d8gCkg5DDofO929iBubLzK4xXmMI69VQm6IXcmoRx8tMYqC30-4OQPLd44f_0oe2CgD_h46SfZl7dvPq83xcXHd-_X5xeFqlsaC0EJUTU3ta5YSQGZ6bjitW65UQpqgE6XWhjRNFybChihHW-EhhIEx6Zpq5PsdJ47evdjwhDlzgaFfQ8DuilIJipG2-oWPvsLbt3kh3SbpC3nrBRCJPRiRsq7EDwaOXq7A_9LUiJvU5cpdTmnnvDTZeLU7VDf0SXmBJ4vAIKC3ngYlA13TtSs5YfTFuem8f8Li9nZEPHnHwn-WjJe8UZuvn6Try_XH16VzUZeJl_PHtMD9ha9DMrioNLrPaootbP_WvMbnu26Zw</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Peng, S.Y.</creator><creator>Wu, K.C.</creator><creator>Wang, J.J.</creator><creator>Chuang, J.H.</creator><creator>Peng, S.K.</creator><creator>Lai, Y.H.</creator><general>Elsevier Ltd</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>6I.</scope><scope>AAFTH</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>200701</creationdate><title>Predicting postoperative nausea and vomiting with the application of an artificial neural network</title><author>Peng, S.Y. ; Wu, K.C. ; Wang, J.J. ; Chuang, J.H. ; Peng, S.K. ; Lai, Y.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-8100c47f4d3621ae6fb7c74d97fcca4aabd2d8f8557df3a601b758da2a87e5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Anesthesia</topic><topic>Anesthesia, General</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Antiemetics - administration & dosage</topic><topic>artificial neural network</topic><topic>Biological and medical sciences</topic><topic>Epidemiologic Methods</topic><topic>Female</topic><topic>Humans</topic><topic>Koivuranta score</topic><topic>Male</topic><topic>measurement techniques</topic><topic>measurement techniques, artificial neural network, Naïve Bayesian classifier, Koivuranta score</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Naïve Bayesian classifier</topic><topic>Neural Networks (Computer)</topic><topic>Patient Selection</topic><topic>PONV</topic><topic>Postoperative Nausea and Vomiting - etiology</topic><topic>Postoperative Nausea and Vomiting - prevention & control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, S.Y.</creatorcontrib><creatorcontrib>Wu, K.C.</creatorcontrib><creatorcontrib>Wang, J.J.</creatorcontrib><creatorcontrib>Chuang, J.H.</creatorcontrib><creatorcontrib>Peng, S.K.</creatorcontrib><creatorcontrib>Lai, Y.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, S.Y.</au><au>Wu, K.C.</au><au>Wang, J.J.</au><au>Chuang, J.H.</au><au>Peng, S.K.</au><au>Lai, Y.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting postoperative nausea and vomiting with the application of an artificial neural network</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><addtitle>Br J Anaesth</addtitle><date>2007-01</date><risdate>2007</risdate><volume>98</volume><issue>1</issue><spage>60</spage><epage>65</epage><pages>60-65</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><coden>BJANAD</coden><abstract>Several medications have proved to be useful in preventing postoperative nausea and vomiting (PONV). However, routine antiemetic prophylaxis is not cost-effective. We evaluated the accuracy and discriminating power of an artificial neural network (ANN) to predict PONV.
We analysed data from 1086 in-patients who underwent various surgical procedures under general anaesthesia without antiemetic prophylaxis. Predictors used for ANN training were selected by computing the value of χ2 statistic and information gain with respect to PONV. The configuration of the ANN was chosen by using a software tool. Then the training of the ANN was performed based on data from a training set (n=656). Testing validation was performed with the remaining patients (n=430) whose outcome regarding PONV was unknown to the ANN. Area under the receiver operating characteristic (ROC) curves were used to quantify predictive performance. ANN performance was compared with those of the Naïve Bayesian classifier model, logistic regression model, simplified Apfel score and Koivuranta score.
ANN accuracy was 83.3%, sensitivity 77.9% and specificity 85.0% in predicting PONV. The areas under the ROC curve follow: ANN, 0.814 (0.774–0.850); Naïve Bayesian classifier, 0.570 (0.522–0.617); logistic regression, 0.669 (0.623–0.714); Koivuranta score, 0.626 (0.578–0.672); simplified Apfel score, 0.624 (0.576–0.670). ANN discriminatory power was superior to those of the other predicting models (P<0.05).
The ANN provided the best predictive performance among all tested models.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>17065170</pmid><doi>10.1093/bja/ael282</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0912 |
ispartof | British journal of anaesthesia : BJA, 2007-01, Vol.98 (1), p.60-65 |
issn | 0007-0912 1471-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_68361939 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Adult Anesthesia Anesthesia, General Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Antiemetics - administration & dosage artificial neural network Biological and medical sciences Epidemiologic Methods Female Humans Koivuranta score Male measurement techniques measurement techniques, artificial neural network, Naïve Bayesian classifier, Koivuranta score Medical sciences Middle Aged Naïve Bayesian classifier Neural Networks (Computer) Patient Selection PONV Postoperative Nausea and Vomiting - etiology Postoperative Nausea and Vomiting - prevention & control |
title | Predicting postoperative nausea and vomiting with the application of an artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20postoperative%20nausea%20and%20vomiting%20with%20the%20application%20of%20an%20artificial%20neural%20network&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Peng,%20S.Y.&rft.date=2007-01&rft.volume=98&rft.issue=1&rft.spage=60&rft.epage=65&rft.pages=60-65&rft.issn=0007-0912&rft.eissn=1471-6771&rft.coden=BJANAD&rft_id=info:doi/10.1093/bja/ael282&rft_dat=%3Cproquest_cross%3E68361939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197762888&rft_id=info:pmid/17065170&rft_oup_id=10.1093/bja/ael282&rft_els_id=S0007091217352972&rfr_iscdi=true |